![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ramtub | Structured version Visualization version GIF version |
Description: The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
Ref | Expression |
---|---|
ramval.c | β’ πΆ = (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π}) |
ramval.t | β’ π = {π β β0 β£ βπ (π β€ (β―βπ ) β βπ β (π βm (π πΆπ))βπ β π βπ₯ β π« π ((πΉβπ) β€ (β―βπ₯) β§ (π₯πΆπ) β (β‘π β {π})))} |
Ref | Expression |
---|---|
ramtub | β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ π΄ β π) β (π Ramsey πΉ) β€ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ramval.c | . . . 4 β’ πΆ = (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π}) | |
2 | ramval.t | . . . 4 β’ π = {π β β0 β£ βπ (π β€ (β―βπ ) β βπ β (π βm (π πΆπ))βπ β π βπ₯ β π« π ((πΉβπ) β€ (β―βπ₯) β§ (π₯πΆπ) β (β‘π β {π})))} | |
3 | 1, 2 | ramcl2lem 16949 | . . 3 β’ ((π β β0 β§ π β π β§ πΉ:π βΆβ0) β (π Ramsey πΉ) = if(π = β , +β, inf(π, β, < ))) |
4 | n0i 4333 | . . . 4 β’ (π΄ β π β Β¬ π = β ) | |
5 | 4 | iffalsed 4539 | . . 3 β’ (π΄ β π β if(π = β , +β, inf(π, β, < )) = inf(π, β, < )) |
6 | 3, 5 | sylan9eq 2791 | . 2 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ π΄ β π) β (π Ramsey πΉ) = inf(π, β, < )) |
7 | 2 | ssrab3 4080 | . . . . 5 β’ π β β0 |
8 | nn0uz 12871 | . . . . 5 β’ β0 = (β€β₯β0) | |
9 | 7, 8 | sseqtri 4018 | . . . 4 β’ π β (β€β₯β0) |
10 | 9 | a1i 11 | . . 3 β’ ((π β β0 β§ π β π β§ πΉ:π βΆβ0) β π β (β€β₯β0)) |
11 | infssuzle 12922 | . . 3 β’ ((π β (β€β₯β0) β§ π΄ β π) β inf(π, β, < ) β€ π΄) | |
12 | 10, 11 | sylan 579 | . 2 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ π΄ β π) β inf(π, β, < ) β€ π΄) |
13 | 6, 12 | eqbrtrd 5170 | 1 β’ (((π β β0 β§ π β π β§ πΉ:π βΆβ0) β§ π΄ β π) β (π Ramsey πΉ) β€ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 βwal 1538 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 {crab 3431 Vcvv 3473 β wss 3948 β c0 4322 ifcif 4528 π« cpw 4602 {csn 4628 class class class wbr 5148 β‘ccnv 5675 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7412 β cmpo 7414 βm cmap 8826 infcinf 9442 βcr 11115 0cc0 11116 +βcpnf 11252 < clt 11255 β€ cle 11256 β0cn0 12479 β€β₯cuz 12829 β―chash 14297 Ramsey cram 16939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-ram 16941 |
This theorem is referenced by: ramub 16953 |
Copyright terms: Public domain | W3C validator |