| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ramtub | Structured version Visualization version GIF version | ||
| Description: The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.) (Revised by AV, 14-Sep-2020.) |
| Ref | Expression |
|---|---|
| ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| ramval.t | ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} |
| Ref | Expression |
|---|---|
| ramtub | ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → (𝑀 Ramsey 𝐹) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
| 2 | ramval.t | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (𝑅 ↑m (𝑠𝐶𝑀))∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝑓 “ {𝑐})))} | |
| 3 | 1, 2 | ramcl2lem 16956 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < ))) |
| 4 | n0i 4299 | . . . 4 ⊢ (𝐴 ∈ 𝑇 → ¬ 𝑇 = ∅) | |
| 5 | 4 | iffalsed 4495 | . . 3 ⊢ (𝐴 ∈ 𝑇 → if(𝑇 = ∅, +∞, inf(𝑇, ℝ, < )) = inf(𝑇, ℝ, < )) |
| 6 | 3, 5 | sylan9eq 2784 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ, < )) |
| 7 | 2 | ssrab3 4041 | . . . . 5 ⊢ 𝑇 ⊆ ℕ0 |
| 8 | nn0uz 12811 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 7, 8 | sseqtri 3992 | . . . 4 ⊢ 𝑇 ⊆ (ℤ≥‘0) |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → 𝑇 ⊆ (ℤ≥‘0)) |
| 11 | infssuzle 12866 | . . 3 ⊢ ((𝑇 ⊆ (ℤ≥‘0) ∧ 𝐴 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝐴) | |
| 12 | 10, 11 | sylan 580 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝐴) |
| 13 | 6, 12 | eqbrtrd 5124 | 1 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ 𝐴 ∈ 𝑇) → (𝑀 Ramsey 𝐹) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 ifcif 4484 𝒫 cpw 4559 {csn 4585 class class class wbr 5102 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 infcinf 9368 ℝcr 11043 0cc0 11044 +∞cpnf 11181 < clt 11184 ≤ cle 11185 ℕ0cn0 12418 ℤ≥cuz 12769 ♯chash 14271 Ramsey cram 16946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-ram 16948 |
| This theorem is referenced by: ramub 16960 |
| Copyright terms: Public domain | W3C validator |