MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem2 Structured version   Visualization version   GIF version

Theorem odlem2 18342
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odlem2 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))

Proof of Theorem odlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6929 . . . . 5 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
21eqeq1d 2780 . . . 4 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
32elrab 3572 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ))
4 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
5 odid.3 . . . . . 6 · = (.g𝐺)
6 odid.4 . . . . . 6 0 = (0g𝐺)
7 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
8 eqid 2778 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
94, 5, 6, 7, 8odval 18337 . . . . 5 (𝐴𝑋 → (𝑂𝐴) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )))
10 n0i 4148 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)
1110iffalsed 4318 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
129, 11sylan9eq 2834 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
13 ssrab2 3908 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
14 nnuz 12029 . . . . . . . 8 ℕ = (ℤ‘1)
1513, 14sseqtri 3856 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1)
16 ne0i 4149 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
1716adantl 475 . . . . . . 7 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
18 infssuzcl 12079 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
1915, 17, 18sylancr 581 . . . . . 6 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
2013, 19sseldi 3819 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ)
21 infssuzle 12078 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2215, 21mpan 680 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2322adantl 475 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
24 elrabi 3567 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℕ)
2524nnzd 11833 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℤ)
26 fznn 12726 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2725, 26syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2827adantl 475 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2920, 23, 28mpbir2and 703 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁))
3012, 29eqeltrd 2859 . . 3 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) ∈ (1...𝑁))
313, 30sylan2br 588 . 2 ((𝐴𝑋 ∧ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...𝑁))
32313impb 1104 1 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  {crab 3094  wss 3792  c0 4141  ifcif 4307   class class class wbr 4886  cfv 6135  (class class class)co 6922  infcinf 8635  cr 10271  0cc0 10272  1c1 10273   < clt 10411  cle 10412  cn 11374  cz 11728  cuz 11992  ...cfz 12643  Basecbs 16255  0gc0g 16486  .gcmg 17927  odcod 18328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-od 18332
This theorem is referenced by:  mndodconglem  18344  oddvdsnn0  18347  odnncl  18348  oddvds  18350  od1  18360
  Copyright terms: Public domain W3C validator