MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem2 Structured version   Visualization version   GIF version

Theorem odlem2 19557
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odlem2 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))

Proof of Theorem odlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . 5 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
21eqeq1d 2739 . . . 4 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
32elrab 3692 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ))
4 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
5 odid.3 . . . . . 6 · = (.g𝐺)
6 odid.4 . . . . . 6 0 = (0g𝐺)
7 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
8 eqid 2737 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
94, 5, 6, 7, 8odval 19552 . . . . 5 (𝐴𝑋 → (𝑂𝐴) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )))
10 n0i 4340 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)
1110iffalsed 4536 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
129, 11sylan9eq 2797 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
13 ssrab2 4080 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
14 nnuz 12921 . . . . . . . 8 ℕ = (ℤ‘1)
1513, 14sseqtri 4032 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1)
16 ne0i 4341 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
1716adantl 481 . . . . . . 7 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
18 infssuzcl 12974 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
1915, 17, 18sylancr 587 . . . . . 6 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
2013, 19sselid 3981 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ)
21 infssuzle 12973 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2215, 21mpan 690 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2322adantl 481 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
24 elrabi 3687 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℕ)
2524nnzd 12640 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℤ)
26 fznn 13632 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2725, 26syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2827adantl 481 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2920, 23, 28mpbir2and 713 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁))
3012, 29eqeltrd 2841 . . 3 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) ∈ (1...𝑁))
313, 30sylan2br 595 . 2 ((𝐴𝑋 ∧ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...𝑁))
32313impb 1115 1 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951  c0 4333  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154  0cc0 11155  1c1 11156   < clt 11295  cle 11296  cn 12266  cz 12613  cuz 12878  ...cfz 13547  Basecbs 17247  0gc0g 17484  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-od 19546
This theorem is referenced by:  mndodconglem  19559  oddvdsnn0  19562  odnncl  19563  oddvds  19565  od1  19577
  Copyright terms: Public domain W3C validator