MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem2 Structured version   Visualization version   GIF version

Theorem odlem2 19445
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odlem2 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))

Proof of Theorem odlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . . 5 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
21eqeq1d 2731 . . . 4 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
32elrab 3656 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ↔ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ))
4 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
5 odid.3 . . . . . 6 · = (.g𝐺)
6 odid.4 . . . . . 6 0 = (0g𝐺)
7 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
8 eqid 2729 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
94, 5, 6, 7, 8odval 19440 . . . . 5 (𝐴𝑋 → (𝑂𝐴) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )))
10 n0i 4299 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅)
1110iffalsed 4495 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
129, 11sylan9eq 2784 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ))
13 ssrab2 4039 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
14 nnuz 12812 . . . . . . . 8 ℕ = (ℤ‘1)
1513, 14sseqtri 3992 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1)
16 ne0i 4300 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
1716adantl 481 . . . . . . 7 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅)
18 infssuzcl 12867 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
1915, 17, 18sylancr 587 . . . . . 6 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 })
2013, 19sselid 3941 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ)
21 infssuzle 12866 . . . . . . 7 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2215, 21mpan 690 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
2322adantl 481 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)
24 elrabi 3651 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℕ)
2524nnzd 12532 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → 𝑁 ∈ ℤ)
26 fznn 13529 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2725, 26syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2827adantl 481 . . . . 5 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ≤ 𝑁)))
2920, 23, 28mpbir2and 713 . . . 4 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }, ℝ, < ) ∈ (1...𝑁))
3012, 29eqeltrd 2828 . . 3 ((𝐴𝑋𝑁 ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }) → (𝑂𝐴) ∈ (1...𝑁))
313, 30sylan2br 595 . 2 ((𝐴𝑋 ∧ (𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ (1...𝑁))
32313impb 1114 1 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3402  wss 3911  c0 4292  ifcif 4484   class class class wbr 5102  cfv 6499  (class class class)co 7369  infcinf 9368  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cn 12162  cz 12505  cuz 12769  ...cfz 13444  Basecbs 17155  0gc0g 17378  .gcmg 18975  odcod 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-od 19434
This theorem is referenced by:  mndodconglem  19447  oddvdsnn0  19450  odnncl  19451  oddvds  19453  od1  19465
  Copyright terms: Public domain W3C validator