Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem6 Structured version   Visualization version   GIF version

Theorem flt4lem6 41703
Description: Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.)
Hypotheses
Ref Expression
flt4lem6.a (𝜑𝐴 ∈ ℕ)
flt4lem6.b (𝜑𝐵 ∈ ℕ)
flt4lem6.c (𝜑𝐶 ∈ ℕ)
flt4lem6.1 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))

Proof of Theorem flt4lem6
StepHypRef Expression
1 flt4lem6.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 flt4lem6.b . . . . 5 (𝜑𝐵 ∈ ℕ)
32nnzd 12590 . . . 4 (𝜑𝐵 ∈ ℤ)
4 divgcdnn 16461 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
51, 3, 4syl2anc 583 . . 3 (𝜑 → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
61nnzd 12590 . . . 4 (𝜑𝐴 ∈ ℤ)
7 divgcdnnr 16462 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
82, 6, 7syl2anc 583 . . 3 (𝜑 → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
9 flt4lem6.1 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
10 gcdnncl 16453 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
111, 2, 10syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1211nncnd 12233 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℂ)
1312flt4lem 41690 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑4) = (((𝐴 gcd 𝐵)↑2)↑2))
149, 13oveq12d 7430 . . . . . 6 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
151nncnd 12233 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1611nnne0d 12267 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
17 4nn0 12496 . . . . . . . . . 10 4 ∈ ℕ0
1817a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℕ0)
1915, 12, 16, 18expdivd 14130 . . . . . . . 8 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) = ((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)))
202nncnd 12233 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120, 12, 16, 18expdivd 14130 . . . . . . . 8 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) = ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4)))
2219, 21oveq12d 7430 . . . . . . 7 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2315, 18expcld 14116 . . . . . . . 8 (𝜑 → (𝐴↑4) ∈ ℂ)
2420, 18expcld 14116 . . . . . . . 8 (𝜑 → (𝐵↑4) ∈ ℂ)
2512, 18expcld 14116 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℂ)
2611, 18nnexpcld 14213 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℕ)
2726nnne0d 12267 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ≠ 0)
2823, 24, 25, 27divdird 12033 . . . . . . 7 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2922, 28eqtr4d 2774 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)))
30 flt4lem6.c . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
3130nncnd 12233 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3211nnsqcld 14212 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
3332nncnd 12233 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℂ)
3432nnne0d 12267 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ≠ 0)
3531, 33, 34sqdivd 14129 . . . . . 6 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
3614, 29, 353eqtr4d 2781 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))
375, 18nnexpcld 14213 . . . . . . 7 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
388, 18nnexpcld 14213 . . . . . . 7 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
3937, 38nnaddcld 12269 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℕ)
4039nnzd 12590 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℤ)
4136, 40eqeltrrd 2833 . . . 4 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) ∈ ℤ)
4230nnzd 12590 . . . . 5 (𝜑𝐶 ∈ ℤ)
43 znq 12941 . . . . 5 ((𝐶 ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑2) ∈ ℕ) → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4442, 32, 43syl2anc 583 . . . 4 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4530nnred 12232 . . . . 5 (𝜑𝐶 ∈ ℝ)
4632nnred 12232 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℝ)
4730nngt0d 12266 . . . . 5 (𝜑 → 0 < 𝐶)
4832nngt0d 12266 . . . . 5 (𝜑 → 0 < ((𝐴 gcd 𝐵)↑2))
4945, 46, 47, 48divgt0d 12154 . . . 4 (𝜑 → 0 < (𝐶 / ((𝐴 gcd 𝐵)↑2)))
5041, 44, 49posqsqznn 41537 . . 3 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ)
515, 8, 503jca 1127 . 2 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ))
5251, 36jca 511 1 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  (class class class)co 7412   + caddc 11116   / cdiv 11876  cn 12217  2c2 12272  4c4 12274  0cn0 12477  cz 12563  cq 12937  cexp 14032   gcd cgcd 16440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-dvds 16203  df-gcd 16441  df-numer 16676  df-denom 16677
This theorem is referenced by:  nna4b4nsq  41705
  Copyright terms: Public domain W3C validator