Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem6 Structured version   Visualization version   GIF version

Theorem flt4lem6 42645
Description: Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.)
Hypotheses
Ref Expression
flt4lem6.a (𝜑𝐴 ∈ ℕ)
flt4lem6.b (𝜑𝐵 ∈ ℕ)
flt4lem6.c (𝜑𝐶 ∈ ℕ)
flt4lem6.1 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))

Proof of Theorem flt4lem6
StepHypRef Expression
1 flt4lem6.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 flt4lem6.b . . . . 5 (𝜑𝐵 ∈ ℕ)
32nnzd 12638 . . . 4 (𝜑𝐵 ∈ ℤ)
4 divgcdnn 16549 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
51, 3, 4syl2anc 584 . . 3 (𝜑 → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
61nnzd 12638 . . . 4 (𝜑𝐴 ∈ ℤ)
7 divgcdnnr 16550 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
82, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
9 flt4lem6.1 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
10 gcdnncl 16541 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
111, 2, 10syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1211nncnd 12280 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℂ)
1312flt4lem 42632 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑4) = (((𝐴 gcd 𝐵)↑2)↑2))
149, 13oveq12d 7449 . . . . . 6 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
151nncnd 12280 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1611nnne0d 12314 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
17 4nn0 12543 . . . . . . . . . 10 4 ∈ ℕ0
1817a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℕ0)
1915, 12, 16, 18expdivd 14197 . . . . . . . 8 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) = ((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)))
202nncnd 12280 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120, 12, 16, 18expdivd 14197 . . . . . . . 8 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) = ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4)))
2219, 21oveq12d 7449 . . . . . . 7 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2315, 18expcld 14183 . . . . . . . 8 (𝜑 → (𝐴↑4) ∈ ℂ)
2420, 18expcld 14183 . . . . . . . 8 (𝜑 → (𝐵↑4) ∈ ℂ)
2512, 18expcld 14183 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℂ)
2611, 18nnexpcld 14281 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℕ)
2726nnne0d 12314 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ≠ 0)
2823, 24, 25, 27divdird 12079 . . . . . . 7 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2922, 28eqtr4d 2778 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)))
30 flt4lem6.c . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
3130nncnd 12280 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3211nnsqcld 14280 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
3332nncnd 12280 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℂ)
3432nnne0d 12314 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ≠ 0)
3531, 33, 34sqdivd 14196 . . . . . 6 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
3614, 29, 353eqtr4d 2785 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))
375, 18nnexpcld 14281 . . . . . . 7 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
388, 18nnexpcld 14281 . . . . . . 7 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
3937, 38nnaddcld 12316 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℕ)
4039nnzd 12638 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℤ)
4136, 40eqeltrrd 2840 . . . 4 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) ∈ ℤ)
4230nnzd 12638 . . . . 5 (𝜑𝐶 ∈ ℤ)
43 znq 12992 . . . . 5 ((𝐶 ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑2) ∈ ℕ) → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4442, 32, 43syl2anc 584 . . . 4 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4530nnred 12279 . . . . 5 (𝜑𝐶 ∈ ℝ)
4632nnred 12279 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℝ)
4730nngt0d 12313 . . . . 5 (𝜑 → 0 < 𝐶)
4832nngt0d 12313 . . . . 5 (𝜑 → 0 < ((𝐴 gcd 𝐵)↑2))
4945, 46, 47, 48divgt0d 12201 . . . 4 (𝜑 → 0 < (𝐶 / ((𝐴 gcd 𝐵)↑2)))
5041, 44, 49posqsqznn 42350 . . 3 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ)
515, 8, 503jca 1127 . 2 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ))
5251, 36jca 511 1 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431   + caddc 11156   / cdiv 11918  cn 12264  2c2 12319  4c4 12321  0cn0 12524  cz 12611  cq 12988  cexp 14099   gcd cgcd 16528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-numer 16769  df-denom 16770
This theorem is referenced by:  nna4b4nsq  42647
  Copyright terms: Public domain W3C validator