Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem6 Structured version   Visualization version   GIF version

Theorem flt4lem6 40411
Description: Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.)
Hypotheses
Ref Expression
flt4lem6.a (𝜑𝐴 ∈ ℕ)
flt4lem6.b (𝜑𝐵 ∈ ℕ)
flt4lem6.c (𝜑𝐶 ∈ ℕ)
flt4lem6.1 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))

Proof of Theorem flt4lem6
StepHypRef Expression
1 flt4lem6.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 flt4lem6.b . . . . 5 (𝜑𝐵 ∈ ℕ)
32nnzd 12354 . . . 4 (𝜑𝐵 ∈ ℤ)
4 divgcdnn 16150 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
51, 3, 4syl2anc 583 . . 3 (𝜑 → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
61nnzd 12354 . . . 4 (𝜑𝐴 ∈ ℤ)
7 divgcdnnr 16151 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
82, 6, 7syl2anc 583 . . 3 (𝜑 → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
9 flt4lem6.1 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
10 gcdnncl 16142 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
111, 2, 10syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1211nncnd 11919 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℂ)
1312flt4lem 40398 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑4) = (((𝐴 gcd 𝐵)↑2)↑2))
149, 13oveq12d 7273 . . . . . 6 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
151nncnd 11919 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1611nnne0d 11953 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
17 4nn0 12182 . . . . . . . . . 10 4 ∈ ℕ0
1817a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℕ0)
1915, 12, 16, 18expdivd 13806 . . . . . . . 8 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) = ((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)))
202nncnd 11919 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120, 12, 16, 18expdivd 13806 . . . . . . . 8 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) = ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4)))
2219, 21oveq12d 7273 . . . . . . 7 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2315, 18expcld 13792 . . . . . . . 8 (𝜑 → (𝐴↑4) ∈ ℂ)
2420, 18expcld 13792 . . . . . . . 8 (𝜑 → (𝐵↑4) ∈ ℂ)
2512, 18expcld 13792 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℂ)
2611, 18nnexpcld 13888 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℕ)
2726nnne0d 11953 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ≠ 0)
2823, 24, 25, 27divdird 11719 . . . . . . 7 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2922, 28eqtr4d 2781 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)))
30 flt4lem6.c . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
3130nncnd 11919 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3211nnsqcld 13887 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
3332nncnd 11919 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℂ)
3432nnne0d 11953 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ≠ 0)
3531, 33, 34sqdivd 13805 . . . . . 6 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
3614, 29, 353eqtr4d 2788 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))
375, 18nnexpcld 13888 . . . . . . 7 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
388, 18nnexpcld 13888 . . . . . . 7 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
3937, 38nnaddcld 11955 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℕ)
4039nnzd 12354 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℤ)
4136, 40eqeltrrd 2840 . . . 4 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) ∈ ℤ)
4230nnzd 12354 . . . . 5 (𝜑𝐶 ∈ ℤ)
43 znq 12621 . . . . 5 ((𝐶 ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑2) ∈ ℕ) → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4442, 32, 43syl2anc 583 . . . 4 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4530nnred 11918 . . . . 5 (𝜑𝐶 ∈ ℝ)
4632nnred 11918 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℝ)
4730nngt0d 11952 . . . . 5 (𝜑 → 0 < 𝐶)
4832nngt0d 11952 . . . . 5 (𝜑 → 0 < ((𝐴 gcd 𝐵)↑2))
4945, 46, 47, 48divgt0d 11840 . . . 4 (𝜑 → 0 < (𝐶 / ((𝐴 gcd 𝐵)↑2)))
5041, 44, 49posqsqznn 40264 . . 3 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ)
515, 8, 503jca 1126 . 2 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ))
5251, 36jca 511 1 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255   + caddc 10805   / cdiv 11562  cn 11903  2c2 11958  4c4 11960  0cn0 12163  cz 12249  cq 12617  cexp 13710   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368
This theorem is referenced by:  nna4b4nsq  40413
  Copyright terms: Public domain W3C validator