Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem6 Structured version   Visualization version   GIF version

Theorem flt4lem6 42681
Description: Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.)
Hypotheses
Ref Expression
flt4lem6.a (𝜑𝐴 ∈ ℕ)
flt4lem6.b (𝜑𝐵 ∈ ℕ)
flt4lem6.c (𝜑𝐶 ∈ ℕ)
flt4lem6.1 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))

Proof of Theorem flt4lem6
StepHypRef Expression
1 flt4lem6.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 flt4lem6.b . . . . 5 (𝜑𝐵 ∈ ℕ)
32nnzd 12615 . . . 4 (𝜑𝐵 ∈ ℤ)
4 divgcdnn 16534 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
51, 3, 4syl2anc 584 . . 3 (𝜑 → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
61nnzd 12615 . . . 4 (𝜑𝐴 ∈ ℤ)
7 divgcdnnr 16535 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
82, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
9 flt4lem6.1 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
10 gcdnncl 16526 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
111, 2, 10syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1211nncnd 12256 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℂ)
1312flt4lem 42668 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑4) = (((𝐴 gcd 𝐵)↑2)↑2))
149, 13oveq12d 7423 . . . . . 6 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
151nncnd 12256 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1611nnne0d 12290 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
17 4nn0 12520 . . . . . . . . . 10 4 ∈ ℕ0
1817a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℕ0)
1915, 12, 16, 18expdivd 14178 . . . . . . . 8 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) = ((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)))
202nncnd 12256 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120, 12, 16, 18expdivd 14178 . . . . . . . 8 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) = ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4)))
2219, 21oveq12d 7423 . . . . . . 7 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2315, 18expcld 14164 . . . . . . . 8 (𝜑 → (𝐴↑4) ∈ ℂ)
2420, 18expcld 14164 . . . . . . . 8 (𝜑 → (𝐵↑4) ∈ ℂ)
2512, 18expcld 14164 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℂ)
2611, 18nnexpcld 14263 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℕ)
2726nnne0d 12290 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ≠ 0)
2823, 24, 25, 27divdird 12055 . . . . . . 7 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2922, 28eqtr4d 2773 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)))
30 flt4lem6.c . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
3130nncnd 12256 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3211nnsqcld 14262 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
3332nncnd 12256 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℂ)
3432nnne0d 12290 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ≠ 0)
3531, 33, 34sqdivd 14177 . . . . . 6 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
3614, 29, 353eqtr4d 2780 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))
375, 18nnexpcld 14263 . . . . . . 7 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
388, 18nnexpcld 14263 . . . . . . 7 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
3937, 38nnaddcld 12292 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℕ)
4039nnzd 12615 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℤ)
4136, 40eqeltrrd 2835 . . . 4 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) ∈ ℤ)
4230nnzd 12615 . . . . 5 (𝜑𝐶 ∈ ℤ)
43 znq 12968 . . . . 5 ((𝐶 ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑2) ∈ ℕ) → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4442, 32, 43syl2anc 584 . . . 4 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4530nnred 12255 . . . . 5 (𝜑𝐶 ∈ ℝ)
4632nnred 12255 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℝ)
4730nngt0d 12289 . . . . 5 (𝜑 → 0 < 𝐶)
4832nngt0d 12289 . . . . 5 (𝜑 → 0 < ((𝐴 gcd 𝐵)↑2))
4945, 46, 47, 48divgt0d 12177 . . . 4 (𝜑 → 0 < (𝐶 / ((𝐴 gcd 𝐵)↑2)))
5041, 44, 49posqsqznn 42385 . . 3 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ)
515, 8, 503jca 1128 . 2 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ))
5251, 36jca 511 1 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  (class class class)co 7405   + caddc 11132   / cdiv 11894  cn 12240  2c2 12295  4c4 12297  0cn0 12501  cz 12588  cq 12964  cexp 14079   gcd cgcd 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755
This theorem is referenced by:  nna4b4nsq  42683
  Copyright terms: Public domain W3C validator