Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem6 Structured version   Visualization version   GIF version

Theorem flt4lem6 42634
Description: Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.)
Hypotheses
Ref Expression
flt4lem6.a (𝜑𝐴 ∈ ℕ)
flt4lem6.b (𝜑𝐵 ∈ ℕ)
flt4lem6.c (𝜑𝐶 ∈ ℕ)
flt4lem6.1 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))

Proof of Theorem flt4lem6
StepHypRef Expression
1 flt4lem6.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 flt4lem6.b . . . . 5 (𝜑𝐵 ∈ ℕ)
32nnzd 12516 . . . 4 (𝜑𝐵 ∈ ℤ)
4 divgcdnn 16444 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
51, 3, 4syl2anc 584 . . 3 (𝜑 → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
61nnzd 12516 . . . 4 (𝜑𝐴 ∈ ℤ)
7 divgcdnnr 16445 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
82, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
9 flt4lem6.1 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
10 gcdnncl 16436 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
111, 2, 10syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ)
1211nncnd 12162 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℂ)
1312flt4lem 42621 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑4) = (((𝐴 gcd 𝐵)↑2)↑2))
149, 13oveq12d 7371 . . . . . 6 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
151nncnd 12162 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1611nnne0d 12196 . . . . . . . . 9 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
17 4nn0 12421 . . . . . . . . . 10 4 ∈ ℕ0
1817a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℕ0)
1915, 12, 16, 18expdivd 14085 . . . . . . . 8 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) = ((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)))
202nncnd 12162 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120, 12, 16, 18expdivd 14085 . . . . . . . 8 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) = ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4)))
2219, 21oveq12d 7371 . . . . . . 7 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2315, 18expcld 14071 . . . . . . . 8 (𝜑 → (𝐴↑4) ∈ ℂ)
2420, 18expcld 14071 . . . . . . . 8 (𝜑 → (𝐵↑4) ∈ ℂ)
2512, 18expcld 14071 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℂ)
2611, 18nnexpcld 14170 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵)↑4) ∈ ℕ)
2726nnne0d 12196 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑4) ≠ 0)
2823, 24, 25, 27divdird 11956 . . . . . . 7 (𝜑 → (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)) = (((𝐴↑4) / ((𝐴 gcd 𝐵)↑4)) + ((𝐵↑4) / ((𝐴 gcd 𝐵)↑4))))
2922, 28eqtr4d 2767 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = (((𝐴↑4) + (𝐵↑4)) / ((𝐴 gcd 𝐵)↑4)))
30 flt4lem6.c . . . . . . . 8 (𝜑𝐶 ∈ ℕ)
3130nncnd 12162 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3211nnsqcld 14169 . . . . . . . 8 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
3332nncnd 12162 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℂ)
3432nnne0d 12196 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵)↑2) ≠ 0)
3531, 33, 34sqdivd 14084 . . . . . 6 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) = ((𝐶↑2) / (((𝐴 gcd 𝐵)↑2)↑2)))
3614, 29, 353eqtr4d 2774 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))
375, 18nnexpcld 14170 . . . . . . 7 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
388, 18nnexpcld 14170 . . . . . . 7 (𝜑 → ((𝐵 / (𝐴 gcd 𝐵))↑4) ∈ ℕ)
3937, 38nnaddcld 12198 . . . . . 6 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℕ)
4039nnzd 12516 . . . . 5 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) ∈ ℤ)
4136, 40eqeltrrd 2829 . . . 4 (𝜑 → ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2) ∈ ℤ)
4230nnzd 12516 . . . . 5 (𝜑𝐶 ∈ ℤ)
43 znq 12871 . . . . 5 ((𝐶 ∈ ℤ ∧ ((𝐴 gcd 𝐵)↑2) ∈ ℕ) → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4442, 32, 43syl2anc 584 . . . 4 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℚ)
4530nnred 12161 . . . . 5 (𝜑𝐶 ∈ ℝ)
4632nnred 12161 . . . . 5 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℝ)
4730nngt0d 12195 . . . . 5 (𝜑 → 0 < 𝐶)
4832nngt0d 12195 . . . . 5 (𝜑 → 0 < ((𝐴 gcd 𝐵)↑2))
4945, 46, 47, 48divgt0d 12078 . . . 4 (𝜑 → 0 < (𝐶 / ((𝐴 gcd 𝐵)↑2)))
5041, 44, 49posqsqznn 42312 . . 3 (𝜑 → (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ)
515, 8, 503jca 1128 . 2 (𝜑 → ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ))
5251, 36jca 511 1 (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7353   + caddc 11031   / cdiv 11795  cn 12146  2c2 12201  4c4 12203  0cn0 12402  cz 12489  cq 12867  cexp 13986   gcd cgcd 16423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-numer 16664  df-denom 16665
This theorem is referenced by:  nna4b4nsq  42636
  Copyright terms: Public domain W3C validator