Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem2 Structured version   Visualization version   GIF version

Theorem faclimlem2 32879
Description: Lemma for faclim 32881. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Distinct variable group:   𝑛,𝑀

Proof of Theorem faclimlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclimlem1 32878 . 2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))))
2 nnuz 12275 . . . 4 ℕ = (ℤ‘1)
3 1zzd 12007 . . . 4 (𝑀 ∈ ℕ0 → 1 ∈ ℤ)
4 1cnd 10630 . . . . 5 (𝑀 ∈ ℕ0 → 1 ∈ ℂ)
5 nn0p1nn 11930 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
65nnzd 12080 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℤ)
7 nnex 11638 . . . . . . 7 ℕ ∈ V
87mptex 6983 . . . . . 6 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V
98a1i 11 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V)
10 oveq1 7157 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
11 oveq1 7157 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + (𝑀 + 1)) = (𝑘 + (𝑀 + 1)))
1210, 11oveq12d 7168 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
13 eqid 2826 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))
14 ovex 7183 . . . . . . 7 ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ V
1512, 13, 14fvmpt 6767 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
1615adantl 482 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
172, 3, 4, 6, 9, 16divcnvlin 32867 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ⇝ 1)
185nncnd 11648 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℂ)
197mptex 6983 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V
2019a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V)
21 peano2nn 11644 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2221adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2322nnred 11647 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ)
24 simpr 485 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
255adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
2624, 25nnaddcld 11683 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + (𝑀 + 1)) ∈ ℕ)
2723, 26nndivred 11685 . . . . . . 7 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℝ)
2827recnd 10663 . . . . . 6 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℂ)
2928fmpttd 6877 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))):ℕ⟶ℂ)
3029ffvelrnda 6849 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) ∈ ℂ)
3112oveq2d 7166 . . . . . . 7 (𝑚 = 𝑘 → ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
32 eqid 2826 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))
33 ovex 7183 . . . . . . 7 ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) ∈ V
3431, 32, 33fvmpt 6767 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3515oveq2d 7166 . . . . . 6 (𝑘 ∈ ℕ → ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3634, 35eqtr4d 2864 . . . . 5 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
3736adantl 482 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
382, 3, 17, 18, 20, 30, 37climmulc2 14988 . . 3 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ ((𝑀 + 1) · 1))
3918mulid1d 10652 . . 3 (𝑀 ∈ ℕ0 → ((𝑀 + 1) · 1) = (𝑀 + 1))
4038, 39breqtrd 5089 . 2 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ (𝑀 + 1))
411, 40eqbrtrd 5085 1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  Vcvv 3500   class class class wbr 5063  cmpt 5143  cfv 6354  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536   / cdiv 11291  cn 11632  0cn0 11891  seqcseq 13364  cli 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-fl 13157  df-seq 13365  df-exp 13425  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841
This theorem is referenced by:  faclim  32881
  Copyright terms: Public domain W3C validator