Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem2 Structured version   Visualization version   GIF version

Theorem faclimlem2 32976
Description: Lemma for faclim 32978. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Distinct variable group:   𝑛,𝑀

Proof of Theorem faclimlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclimlem1 32975 . 2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))))
2 nnuz 12282 . . . 4 ℕ = (ℤ‘1)
3 1zzd 12014 . . . 4 (𝑀 ∈ ℕ0 → 1 ∈ ℤ)
4 1cnd 10636 . . . . 5 (𝑀 ∈ ℕ0 → 1 ∈ ℂ)
5 nn0p1nn 11937 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
65nnzd 12087 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℤ)
7 nnex 11644 . . . . . . 7 ℕ ∈ V
87mptex 6986 . . . . . 6 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V
98a1i 11 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V)
10 oveq1 7163 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
11 oveq1 7163 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + (𝑀 + 1)) = (𝑘 + (𝑀 + 1)))
1210, 11oveq12d 7174 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
13 eqid 2821 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))
14 ovex 7189 . . . . . . 7 ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ V
1512, 13, 14fvmpt 6768 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
1615adantl 484 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
172, 3, 4, 6, 9, 16divcnvlin 32964 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ⇝ 1)
185nncnd 11654 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℂ)
197mptex 6986 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V
2019a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V)
21 peano2nn 11650 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2221adantl 484 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2322nnred 11653 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ)
24 simpr 487 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
255adantr 483 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
2624, 25nnaddcld 11690 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + (𝑀 + 1)) ∈ ℕ)
2723, 26nndivred 11692 . . . . . . 7 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℝ)
2827recnd 10669 . . . . . 6 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℂ)
2928fmpttd 6879 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))):ℕ⟶ℂ)
3029ffvelrnda 6851 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) ∈ ℂ)
3112oveq2d 7172 . . . . . . 7 (𝑚 = 𝑘 → ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
32 eqid 2821 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))
33 ovex 7189 . . . . . . 7 ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) ∈ V
3431, 32, 33fvmpt 6768 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3515oveq2d 7172 . . . . . 6 (𝑘 ∈ ℕ → ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3634, 35eqtr4d 2859 . . . . 5 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
3736adantl 484 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
382, 3, 17, 18, 20, 30, 37climmulc2 14993 . . 3 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ ((𝑀 + 1) · 1))
3918mulid1d 10658 . . 3 (𝑀 ∈ ℕ0 → ((𝑀 + 1) · 1) = (𝑀 + 1))
4038, 39breqtrd 5092 . 2 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ (𝑀 + 1))
411, 40eqbrtrd 5088 1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540   · cmul 10542   / cdiv 11297  cn 11638  0cn0 11898  seqcseq 13370  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-seq 13371  df-exp 13431  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846
This theorem is referenced by:  faclim  32978
  Copyright terms: Public domain W3C validator