Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem2 Structured version   Visualization version   GIF version

Theorem faclimlem2 35766
Description: Lemma for faclim 35768. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Distinct variable group:   𝑛,𝑀

Proof of Theorem faclimlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclimlem1 35765 . 2 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))))
2 nnuz 12900 . . . 4 ℕ = (ℤ‘1)
3 1zzd 12628 . . . 4 (𝑀 ∈ ℕ0 → 1 ∈ ℤ)
4 1cnd 11235 . . . . 5 (𝑀 ∈ ℕ0 → 1 ∈ ℂ)
5 nn0p1nn 12545 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
65nnzd 12620 . . . . 5 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℤ)
7 nnex 12251 . . . . . . 7 ℕ ∈ V
87mptex 7220 . . . . . 6 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V
98a1i 11 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ∈ V)
10 oveq1 7417 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
11 oveq1 7417 . . . . . . . 8 (𝑚 = 𝑘 → (𝑚 + (𝑀 + 1)) = (𝑘 + (𝑀 + 1)))
1210, 11oveq12d 7428 . . . . . . 7 (𝑚 = 𝑘 → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
13 eqid 2736 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))
14 ovex 7443 . . . . . . 7 ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ V
1512, 13, 14fvmpt 6991 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
1615adantl 481 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
172, 3, 4, 6, 9, 16divcnvlin 35755 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) ⇝ 1)
185nncnd 12261 . . . 4 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℂ)
197mptex 7220 . . . . 5 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V
2019a1i 11 . . . 4 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ∈ V)
21 peano2nn 12257 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
2221adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2322nnred 12260 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ)
24 simpr 484 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
255adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑀 + 1) ∈ ℕ)
2624, 25nnaddcld 12297 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → (𝑚 + (𝑀 + 1)) ∈ ℕ)
2723, 26nndivred 12299 . . . . . . 7 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℝ)
2827recnd 11268 . . . . . 6 ((𝑀 ∈ ℕ0𝑚 ∈ ℕ) → ((𝑚 + 1) / (𝑚 + (𝑀 + 1))) ∈ ℂ)
2928fmpttd 7110 . . . . 5 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))):ℕ⟶ℂ)
3029ffvelcdmda 7079 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘) ∈ ℂ)
3112oveq2d 7426 . . . . . . 7 (𝑚 = 𝑘 → ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
32 eqid 2736 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) = (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))
33 ovex 7443 . . . . . . 7 ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) ∈ V
3431, 32, 33fvmpt 6991 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3515oveq2d 7426 . . . . . 6 (𝑘 ∈ ℕ → ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
3634, 35eqtr4d 2774 . . . . 5 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
3736adantl 481 . . . 4 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1)))))‘𝑘) = ((𝑀 + 1) · ((𝑚 ∈ ℕ ↦ ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))‘𝑘)))
382, 3, 17, 18, 20, 30, 37climmulc2 15658 . . 3 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ ((𝑀 + 1) · 1))
3918mulridd 11257 . . 3 (𝑀 ∈ ℕ0 → ((𝑀 + 1) · 1) = (𝑀 + 1))
4038, 39breqtrd 5150 . 2 (𝑀 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑚 + 1) / (𝑚 + (𝑀 + 1))))) ⇝ (𝑀 + 1))
411, 40eqbrtrd 5146 1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  1c1 11135   + caddc 11137   · cmul 11139   / cdiv 11899  cn 12245  0cn0 12506  seqcseq 14024  cli 15505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814  df-seq 14025  df-exp 14085  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510
This theorem is referenced by:  faclim  35768
  Copyright terms: Public domain W3C validator