Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetlap Structured version   Visualization version   GIF version

Theorem mdetlap 31002
Description: Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
Assertion
Ref Expression
mdetlap (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
Distinct variable groups:   𝐵,𝑗   𝑗,𝐼   𝑗,𝐽   𝑗,𝑀   𝑗,𝑁   𝑅,𝑗   𝜑,𝑗   · ,𝑗   𝐴,𝑗   𝑗,𝐾
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝑍(𝑗)

Proof of Theorem mdetlap
StepHypRef Expression
1 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
2 madjusmdet.m . . 3 (𝜑𝑀𝐵)
3 madjusmdet.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . 4 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . 4 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . 4 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . 4 𝐾 = ((1...𝑁) maAdju 𝑅)
8 madjusmdet.t . . . 4 · = (.r𝑅)
94, 5, 6, 7, 8mdetlap1 30996 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝐼 ∈ (1...𝑁)) → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
101, 2, 3, 9syl3anc 1365 . 2 (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
11 madjusmdet.z . . . . . . 7 𝑍 = (ℤRHom‘𝑅)
12 madjusmdet.e . . . . . . 7 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
13 madjusmdet.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1413adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
151adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑅 ∈ CRing)
163adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
17 simpr 485 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
182adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
195, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18madjusmdet 31001 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))
2019oveq2d 7166 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
21 eqid 2826 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
224, 21, 5, 16, 17, 18matecld 20970 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅))
23 crngring 19244 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
241, 23syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
2511zrhrhm 20594 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
26 zringbas 20558 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
2726, 21rhmf 19414 . . . . . . . . . . 11 (𝑍 ∈ (ℤring RingHom 𝑅) → 𝑍:ℤ⟶(Base‘𝑅))
2824, 25, 273syl 18 . . . . . . . . . 10 (𝜑𝑍:ℤ⟶(Base‘𝑅))
2928adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑍:ℤ⟶(Base‘𝑅))
30 1zzd 12007 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ)
3130znegcld 12083 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → -1 ∈ ℤ)
32 fz1ssnn 12933 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
3332, 16sseldi 3969 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝐼 ∈ ℕ)
3432, 17sseldi 3969 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
3533, 34nnaddcld 11683 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ)
3635nnnn0d 11949 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ0)
37 zexpcl 13439 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ (𝐼 + 𝑗) ∈ ℕ0) → (-1↑(𝐼 + 𝑗)) ∈ ℤ)
3831, 36, 37syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (-1↑(𝐼 + 𝑗)) ∈ ℤ)
3929, 38ffvelrnd 6850 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅))
4021, 8crngcom 19248 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)))
4115, 22, 39, 40syl3anc 1365 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)))
4241oveq1d 7165 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))
4315, 23syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑅 ∈ Ring)
44 eqid 2826 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
45 eqid 2826 . . . . . . . . 9 (𝐼(subMat1‘𝑀)𝑗) = (𝐼(subMat1‘𝑀)𝑗)
464, 5, 44, 45, 14, 16, 17, 18smatcl 30972 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
47 eqid 2826 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
4812, 47, 44, 21mdetcl 21140 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))
4915, 46, 48syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))
5021, 8ringass 19250 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5143, 22, 39, 49, 50syl13anc 1366 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5221, 8ringass 19250 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5343, 39, 22, 49, 52syl13anc 1366 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5442, 51, 533eqtr3d 2869 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5520, 54eqtrd 2861 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5655mpteq2dva 5158 . . 3 (𝜑 → (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼))) = (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))
5756oveq2d 7166 . 2 (𝜑 → (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
5810, 57eqtrd 2861 1 (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  cmpt 5143  wf 6350  cfv 6354  (class class class)co 7150  1c1 10532   + caddc 10534  cmin 10864  -cneg 10865  cn 11632  0cn0 11891  cz 11975  ...cfz 12887  cexp 13424  Basecbs 16478  .rcmulr 16561   Σg cgsu 16709  Ringcrg 19233  CRingccrg 19234   RingHom crh 19400  ringzring 20552  ℤRHomczrh 20582   Mat cmat 20951   maDet cmdat 21128   maAdju cmadu 21176  subMat1csmat 30963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-xor 1498  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-ot 4573  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12385  df-fz 12888  df-fzo 13029  df-seq 13365  df-exp 13425  df-hash 13686  df-word 13857  df-lsw 13910  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-reverse 14116  df-s2 14205  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18051  df-minusg 18052  df-mulg 18170  df-subg 18221  df-ghm 18301  df-gim 18344  df-cntz 18392  df-oppg 18419  df-symg 18441  df-pmtr 18506  df-psgn 18555  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-cring 19236  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-dvr 19369  df-rnghom 19403  df-drng 19440  df-subrg 19469  df-sra 19880  df-rgmod 19881  df-cnfld 20481  df-zring 20553  df-zrh 20586  df-dsmm 20811  df-frlm 20826  df-mat 20952  df-marrep 21102  df-subma 21121  df-mdet 21129  df-madu 21178  df-minmar1 21179  df-smat 30964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator