Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetlap Structured version   Visualization version   GIF version

Theorem mdetlap 30229
Description: Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
Assertion
Ref Expression
mdetlap (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
Distinct variable groups:   𝐵,𝑗   𝑗,𝐼   𝑗,𝐽   𝑗,𝑀   𝑗,𝑁   𝑅,𝑗   𝜑,𝑗   · ,𝑗   𝐴,𝑗   𝑗,𝐾
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝑍(𝑗)

Proof of Theorem mdetlap
StepHypRef Expression
1 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
2 madjusmdet.m . . 3 (𝜑𝑀𝐵)
3 madjusmdet.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . 4 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . 4 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . 4 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . 4 𝐾 = ((1...𝑁) maAdju 𝑅)
8 madjusmdet.t . . . 4 · = (.r𝑅)
94, 5, 6, 7, 8mdetlap1 30223 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝐼 ∈ (1...𝑁)) → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
101, 2, 3, 9syl3anc 1483 . 2 (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
11 madjusmdet.z . . . . . . 7 𝑍 = (ℤRHom‘𝑅)
12 madjusmdet.e . . . . . . 7 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
13 madjusmdet.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1413adantr 468 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
151adantr 468 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑅 ∈ CRing)
163adantr 468 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
17 simpr 473 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
182adantr 468 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
195, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18madjusmdet 30228 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))
2019oveq2d 6893 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
21 eqid 2813 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
224, 21, 5, 16, 17, 18matecld 20446 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅))
23 crngring 18763 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
241, 23syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
2511zrhrhm 20071 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
26 zringbas 20035 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
2726, 21rhmf 18933 . . . . . . . . . . 11 (𝑍 ∈ (ℤring RingHom 𝑅) → 𝑍:ℤ⟶(Base‘𝑅))
2824, 25, 273syl 18 . . . . . . . . . 10 (𝜑𝑍:ℤ⟶(Base‘𝑅))
2928adantr 468 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑍:ℤ⟶(Base‘𝑅))
30 1zzd 11677 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ)
3130znegcld 11753 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → -1 ∈ ℤ)
32 fz1ssnn 12598 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
3332, 16sseldi 3803 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝐼 ∈ ℕ)
3432, 17sseldi 3803 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
3533, 34nnaddcld 11356 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ)
3635nnnn0d 11620 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ0)
37 zexpcl 13101 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ (𝐼 + 𝑗) ∈ ℕ0) → (-1↑(𝐼 + 𝑗)) ∈ ℤ)
3831, 36, 37syl2anc 575 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (-1↑(𝐼 + 𝑗)) ∈ ℤ)
3929, 38ffvelrnd 6585 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅))
4021, 8crngcom 18767 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)))
4115, 22, 39, 40syl3anc 1483 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)))
4241oveq1d 6892 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))
4315, 23syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑅 ∈ Ring)
44 eqid 2813 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
45 eqid 2813 . . . . . . . . 9 (𝐼(subMat1‘𝑀)𝑗) = (𝐼(subMat1‘𝑀)𝑗)
464, 5, 44, 45, 14, 16, 17, 18smatcl 30199 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
47 eqid 2813 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
4812, 47, 44, 21mdetcl 20617 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))
4915, 46, 48syl2anc 575 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))
5021, 8ringass 18769 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5143, 22, 39, 49, 50syl13anc 1484 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5221, 8ringass 18769 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5343, 39, 22, 49, 52syl13anc 1484 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5442, 51, 533eqtr3d 2855 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5520, 54eqtrd 2847 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5655mpteq2dva 4945 . . 3 (𝜑 → (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼))) = (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))
5756oveq2d 6893 . 2 (𝜑 → (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
5810, 57eqtrd 2847 1 (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  cmpt 4930  wf 6100  cfv 6104  (class class class)co 6877  1c1 10225   + caddc 10227  cmin 10554  -cneg 10555  cn 11308  0cn0 11562  cz 11646  ...cfz 12552  cexp 13086  Basecbs 16071  .rcmulr 16157   Σg cgsu 16309  Ringcrg 18752  CRingccrg 18753   RingHom crh 18919  ringzring 20029  ℤRHomczrh 20059   Mat cmat 20427   maDet cmdat 20605   maAdju cmadu 20653  subMat1csmat 30190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-xor 1619  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-ot 4386  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7401  df-2nd 7402  df-supp 7533  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-xnn0 11633  df-z 11647  df-dec 11763  df-uz 11908  df-rp 12050  df-fz 12553  df-fzo 12693  df-seq 13028  df-exp 13087  df-hash 13341  df-word 13513  df-lsw 13514  df-concat 13515  df-s1 13516  df-substr 13517  df-splice 13518  df-reverse 13519  df-s2 13820  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-mulr 16170  df-starv 16171  df-sca 16172  df-vsca 16173  df-ip 16174  df-tset 16175  df-ple 16176  df-ds 16178  df-unif 16179  df-hom 16180  df-cco 16181  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-subg 17796  df-ghm 17863  df-gim 17906  df-cntz 17954  df-oppg 17980  df-symg 18002  df-pmtr 18066  df-psgn 18115  df-cmn 18399  df-abl 18400  df-mgp 18695  df-ur 18707  df-ring 18754  df-cring 18755  df-oppr 18828  df-dvdsr 18846  df-unit 18847  df-invr 18877  df-dvr 18888  df-rnghom 18922  df-drng 18956  df-subrg 18985  df-sra 19384  df-rgmod 19385  df-cnfld 19958  df-zring 20030  df-zrh 20063  df-dsmm 20290  df-frlm 20305  df-mat 20428  df-marrep 20579  df-subma 20598  df-mdet 20606  df-madu 20655  df-minmar1 20656  df-smat 30191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator