Proof of Theorem mdetlap
Step | Hyp | Ref
| Expression |
1 | | madjusmdet.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ CRing) |
2 | | madjusmdet.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝐵) |
3 | | madjusmdet.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
4 | | madjusmdet.a |
. . . 4
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
5 | | madjusmdet.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
6 | | madjusmdet.d |
. . . 4
⊢ 𝐷 = ((1...𝑁) maDet 𝑅) |
7 | | madjusmdet.k |
. . . 4
⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) |
8 | | madjusmdet.t |
. . . 4
⊢ · =
(.r‘𝑅) |
9 | 4, 5, 6, 7, 8 | mdetlap1 31678 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ (1...𝑁)) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
10 | 1, 2, 3, 9 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
11 | | madjusmdet.z |
. . . . . . 7
⊢ 𝑍 = (ℤRHom‘𝑅) |
12 | | madjusmdet.e |
. . . . . . 7
⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) |
13 | | madjusmdet.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
15 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑅 ∈ CRing) |
16 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁)) |
17 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
18 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ 𝐵) |
19 | 5, 4, 6, 7, 8, 11,
12, 14, 15, 16, 17, 18 | madjusmdet 31683 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) |
20 | 19 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
22 | 4, 21, 5, 16, 17, 18 | matecld 21483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) |
23 | | crngring 19710 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
24 | 1, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Ring) |
25 | 11 | zrhrhm 20625 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑍 ∈ (ℤring
RingHom 𝑅)) |
26 | | zringbas 20588 |
. . . . . . . . . . . 12
⊢ ℤ =
(Base‘ℤring) |
27 | 26, 21 | rhmf 19885 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ (ℤring
RingHom 𝑅) → 𝑍:ℤ⟶(Base‘𝑅)) |
28 | 24, 25, 27 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍:ℤ⟶(Base‘𝑅)) |
29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑍:ℤ⟶(Base‘𝑅)) |
30 | | 1zzd 12281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ) |
31 | 30 | znegcld 12357 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → -1 ∈
ℤ) |
32 | | fz1ssnn 13216 |
. . . . . . . . . . . . 13
⊢
(1...𝑁) ⊆
ℕ |
33 | 32, 16 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ ℕ) |
34 | 32, 17 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ) |
35 | 33, 34 | nnaddcld 11955 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ) |
36 | 35 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈
ℕ0) |
37 | | zexpcl 13725 |
. . . . . . . . . 10
⊢ ((-1
∈ ℤ ∧ (𝐼 +
𝑗) ∈
ℕ0) → (-1↑(𝐼 + 𝑗)) ∈ ℤ) |
38 | 31, 36, 37 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (-1↑(𝐼 + 𝑗)) ∈ ℤ) |
39 | 29, 38 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) |
40 | 21, 8 | crngcom 19716 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗))) |
41 | 15, 22, 39, 40 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗))) |
42 | 41 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) |
43 | 15, 23 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑅 ∈ Ring) |
44 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) |
45 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐼(subMat1‘𝑀)𝑗) = (𝐼(subMat1‘𝑀)𝑗) |
46 | 4, 5, 44, 45, 14, 16, 17, 18 | smatcl 31654 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
((1...(𝑁 − 1))
Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) |
48 | 12, 47, 44, 21 | mdetcl 21653 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅)) |
49 | 15, 46, 48 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅)) |
50 | 21, 8 | ringass 19718 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
51 | 43, 22, 39, 49, 50 | syl13anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
52 | 21, 8 | ringass 19718 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
53 | 43, 39, 22, 49, 52 | syl13anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
54 | 42, 51, 53 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
55 | 20, 54 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
56 | 55 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))) = (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))) |
57 | 56 | oveq2d 7271 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)))) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) |
58 | 10, 57 | eqtrd 2778 |
1
⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) |