Proof of Theorem mdetlap
| Step | Hyp | Ref
| Expression |
| 1 | | madjusmdet.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 2 | | madjusmdet.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 3 | | madjusmdet.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| 4 | | madjusmdet.a |
. . . 4
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| 5 | | madjusmdet.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
| 6 | | madjusmdet.d |
. . . 4
⊢ 𝐷 = ((1...𝑁) maDet 𝑅) |
| 7 | | madjusmdet.k |
. . . 4
⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) |
| 8 | | madjusmdet.t |
. . . 4
⊢ · =
(.r‘𝑅) |
| 9 | 4, 5, 6, 7, 8 | mdetlap1 33825 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ (1...𝑁)) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
| 11 | | madjusmdet.z |
. . . . . . 7
⊢ 𝑍 = (ℤRHom‘𝑅) |
| 12 | | madjusmdet.e |
. . . . . . 7
⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) |
| 13 | | madjusmdet.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 15 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑅 ∈ CRing) |
| 16 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁)) |
| 17 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
| 18 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑀 ∈ 𝐵) |
| 19 | 5, 4, 6, 7, 8, 11,
12, 14, 15, 16, 17, 18 | madjusmdet 33830 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑗(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) |
| 20 | 19 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 21 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 22 | 4, 21, 5, 16, 17, 18 | matecld 22432 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) |
| 23 | | crngring 20242 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 24 | 11 | zrhrhm 21522 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑍 ∈ (ℤring
RingHom 𝑅)) |
| 25 | | zringbas 21464 |
. . . . . . . . . . . 12
⊢ ℤ =
(Base‘ℤring) |
| 26 | 25, 21 | rhmf 20485 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ (ℤring
RingHom 𝑅) → 𝑍:ℤ⟶(Base‘𝑅)) |
| 27 | 1, 23, 24, 26 | 4syl 19 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍:ℤ⟶(Base‘𝑅)) |
| 28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑍:ℤ⟶(Base‘𝑅)) |
| 29 | | 1zzd 12648 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ) |
| 30 | 29 | znegcld 12724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → -1 ∈
ℤ) |
| 31 | | fz1ssnn 13595 |
. . . . . . . . . . . . 13
⊢
(1...𝑁) ⊆
ℕ |
| 32 | 31, 16 | sselid 3981 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ ℕ) |
| 33 | 31, 17 | sselid 3981 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ) |
| 34 | 32, 33 | nnaddcld 12318 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ) |
| 35 | 34 | nnnn0d 12587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈
ℕ0) |
| 36 | | zexpcl 14117 |
. . . . . . . . . 10
⊢ ((-1
∈ ℤ ∧ (𝐼 +
𝑗) ∈
ℕ0) → (-1↑(𝐼 + 𝑗)) ∈ ℤ) |
| 37 | 30, 35, 36 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (-1↑(𝐼 + 𝑗)) ∈ ℤ) |
| 38 | 28, 37 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) |
| 39 | 21, 8 | crngcom 20248 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗))) |
| 40 | 15, 22, 38, 39 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗))) |
| 41 | 40 | oveq1d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) |
| 42 | 15, 23 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑅 ∈ Ring) |
| 43 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) |
| 44 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝐼(subMat1‘𝑀)𝑗) = (𝐼(subMat1‘𝑀)𝑗) |
| 45 | 4, 5, 43, 44, 14, 16, 17, 18 | smatcl 33801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
| 46 | | eqid 2737 |
. . . . . . . . 9
⊢
((1...(𝑁 − 1))
Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) |
| 47 | 12, 46, 43, 21 | mdetcl 22602 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅)) |
| 48 | 15, 45, 47 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅)) |
| 49 | 21, 8 | ringass 20250 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 50 | 42, 22, 38, 48, 49 | syl13anc 1374 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 51 | 21, 8 | ringass 20250 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 52 | 42, 38, 22, 48, 51 | syl13anc 1374 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 53 | 41, 50, 52 | 3eqtr3d 2785 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 54 | 20, 53 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))) |
| 55 | 54 | mpteq2dva 5242 |
. . 3
⊢ (𝜑 → (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))) = (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))) |
| 56 | 55 | oveq2d 7447 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)))) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) |
| 57 | 10, 56 | eqtrd 2777 |
1
⊢ (𝜑 → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))) |