Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetlap Structured version   Visualization version   GIF version

Theorem mdetlap 31092
Description: Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
Assertion
Ref Expression
mdetlap (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
Distinct variable groups:   𝐵,𝑗   𝑗,𝐼   𝑗,𝐽   𝑗,𝑀   𝑗,𝑁   𝑅,𝑗   𝜑,𝑗   · ,𝑗   𝐴,𝑗   𝑗,𝐾
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝑍(𝑗)

Proof of Theorem mdetlap
StepHypRef Expression
1 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
2 madjusmdet.m . . 3 (𝜑𝑀𝐵)
3 madjusmdet.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . 4 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . 4 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . 4 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . 4 𝐾 = ((1...𝑁) maAdju 𝑅)
8 madjusmdet.t . . . 4 · = (.r𝑅)
94, 5, 6, 7, 8mdetlap1 31086 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝐼 ∈ (1...𝑁)) → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
101, 2, 3, 9syl3anc 1367 . 2 (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
11 madjusmdet.z . . . . . . 7 𝑍 = (ℤRHom‘𝑅)
12 madjusmdet.e . . . . . . 7 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
13 madjusmdet.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1413adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
151adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑅 ∈ CRing)
163adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
17 simpr 487 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
182adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
195, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18madjusmdet 31091 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑗(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))
2019oveq2d 7166 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
21 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
224, 21, 5, 16, 17, 18matecld 21029 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅))
23 crngring 19302 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
241, 23syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
2511zrhrhm 20653 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
26 zringbas 20617 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
2726, 21rhmf 19472 . . . . . . . . . . 11 (𝑍 ∈ (ℤring RingHom 𝑅) → 𝑍:ℤ⟶(Base‘𝑅))
2824, 25, 273syl 18 . . . . . . . . . 10 (𝜑𝑍:ℤ⟶(Base‘𝑅))
2928adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑍:ℤ⟶(Base‘𝑅))
30 1zzd 12007 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 1 ∈ ℤ)
3130znegcld 12083 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → -1 ∈ ℤ)
32 fz1ssnn 12932 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
3332, 16sseldi 3964 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝐼 ∈ ℕ)
3432, 17sseldi 3964 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
3533, 34nnaddcld 11683 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ)
3635nnnn0d 11949 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼 + 𝑗) ∈ ℕ0)
37 zexpcl 13438 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ (𝐼 + 𝑗) ∈ ℕ0) → (-1↑(𝐼 + 𝑗)) ∈ ℤ)
3831, 36, 37syl2anc 586 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑁)) → (-1↑(𝐼 + 𝑗)) ∈ ℤ)
3929, 38ffvelrnd 6846 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅))
4021, 8crngcom 19306 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)))
4115, 22, 39, 40syl3anc 1367 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)))
4241oveq1d 7165 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))
4315, 23syl 17 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑅 ∈ Ring)
44 eqid 2821 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
45 eqid 2821 . . . . . . . . 9 (𝐼(subMat1‘𝑀)𝑗) = (𝐼(subMat1‘𝑀)𝑗)
464, 5, 44, 45, 14, 16, 17, 18smatcl 31062 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
47 eqid 2821 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
4812, 47, 44, 21mdetcl 21199 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝐼(subMat1‘𝑀)𝑗) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))
4915, 46, 48syl2anc 586 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑁)) → (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))
5021, 8ringass 19308 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5143, 22, 39, 49, 50syl13anc 1368 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝐼𝑀𝑗) · (𝑍‘(-1↑(𝐼 + 𝑗)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5221, 8ringass 19308 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑍‘(-1↑(𝐼 + 𝑗))) ∈ (Base‘𝑅) ∧ (𝐼𝑀𝑗) ∈ (Base‘𝑅) ∧ (𝐸‘(𝐼(subMat1‘𝑀)𝑗)) ∈ (Base‘𝑅))) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5343, 39, 22, 49, 52syl13anc 1368 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑁)) → (((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐼𝑀𝑗)) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5442, 51, 533eqtr3d 2864 . . . . 5 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · ((𝑍‘(-1↑(𝐼 + 𝑗))) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5520, 54eqtrd 2856 . . . 4 ((𝜑𝑗 ∈ (1...𝑁)) → ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)) = ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))
5655mpteq2dva 5153 . . 3 (𝜑 → (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼))) = (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗))))))
5756oveq2d 7166 . 2 (𝜑 → (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
5810, 57eqtrd 2856 1 (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  1c1 10532   + caddc 10534  cmin 10864  -cneg 10865  cn 11632  0cn0 11891  cz 11975  ...cfz 12886  cexp 13423  Basecbs 16477  .rcmulr 16560   Σg cgsu 16708  Ringcrg 19291  CRingccrg 19292   RingHom crh 19458  ringzring 20611  ℤRHomczrh 20641   Mat cmat 21010   maDet cmdat 21187   maAdju cmadu 21235  subMat1csmat 31053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-reverse 14115  df-s2 14204  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-oppg 18468  df-symg 18490  df-pmtr 18564  df-psgn 18613  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-rnghom 19461  df-drng 19498  df-subrg 19527  df-sra 19938  df-rgmod 19939  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-dsmm 20870  df-frlm 20885  df-mat 21011  df-marrep 21161  df-subma 21180  df-mdet 21188  df-madu 21237  df-minmar1 21238  df-smat 31054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator