Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnrecred | Structured version Visualization version GIF version |
Description: The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnrecred | ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnrecre 12015 | . 2 ⊢ (𝐴 ∈ ℕ → (1 / 𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 / cdiv 11632 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 |
This theorem is referenced by: trireciplem 15574 trirecip 15575 geo2sum 15585 geo2lim 15587 bpolydiflem 15764 ege2le3 15799 eftlub 15818 eirrlem 15913 prmreclem4 16620 prmreclem6 16622 lmnn 24427 bcthlem5 24492 opnmbllem 24765 mbfi1fseqlem4 24883 taylthlem2 25533 logtayl 25815 leibpi 26092 amgmlem 26139 emcllem1 26145 emcllem2 26146 emcllem3 26147 emcllem5 26149 harmoniclbnd 26158 harmonicubnd 26159 harmonicbnd4 26160 fsumharmonic 26161 lgamgulmlem1 26178 lgamgulmlem2 26179 lgamgulmlem3 26180 lgamgulmlem5 26182 lgamucov 26187 ftalem4 26225 ftalem5 26226 basellem6 26235 basellem7 26236 basellem9 26238 chpchtsum 26367 logfaclbnd 26370 rplogsumlem2 26633 rpvmasumlem 26635 dchrmusum2 26642 dchrvmasumlem3 26647 dchrisum0fno1 26659 mulogsumlem 26679 mulogsum 26680 mulog2sumlem1 26682 vmalogdivsum2 26686 logdivbnd 26704 pntrsumo1 26713 pntrlog2bndlem2 26726 pntrlog2bndlem5 26729 pntrlog2bndlem6 26731 pntpbnd2 26735 padicabvf 26779 minvecolem3 29238 minvecolem4 29242 subfacval3 33151 cvmliftlem13 33258 poimirlem29 35806 opnmbllem0 35813 heiborlem7 35975 fltne 40481 irrapxlem4 40647 hashnzfz2 41939 hashnzfzclim 41940 stoweidlem30 43571 stoweidlem38 43579 stoweidlem44 43585 vonioolem1 44218 smflimlem3 44308 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |