Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem22 Structured version   Visualization version   GIF version

Theorem lcmineqlem22 39331
Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem22.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem22.2 (𝜑 → 4 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem22 (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))

Proof of Theorem lcmineqlem22
StepHypRef Expression
1 2re 11703 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
3 2nn0 11906 . . . . . . 7 2 ∈ ℕ0
43a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ0)
5 lcmineqlem22.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11947 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
74, 6nn0mulcld 11952 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℕ0)
8 1nn0 11905 . . . . . 6 1 ∈ ℕ0
98a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
107, 9nn0addcld 11951 . . . 4 (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ0)
112, 10reexpcld 13527 . . 3 (𝜑 → (2↑((2 · 𝑁) + 1)) ∈ ℝ)
127, 4nn0addcld 11951 . . . 4 (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ0)
132, 12reexpcld 13527 . . 3 (𝜑 → (2↑((2 · 𝑁) + 2)) ∈ ℝ)
14 fz1ssnn 12937 . . . . . 6 (1...((2 · 𝑁) + 1)) ⊆ ℕ
15 fzfi 13339 . . . . . 6 (1...((2 · 𝑁) + 1)) ∈ Fin
16 lcmfnncl 15966 . . . . . 6 (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
1714, 15, 16mp2an 691 . . . . 5 (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ
1817a1i 11 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
1918nnred 11644 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℝ)
20 1red 10635 . . . . 5 (𝜑 → 1 ∈ ℝ)
215nnred 11644 . . . . . 6 (𝜑𝑁 ∈ ℝ)
222, 21remulcld 10664 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 1lt2 11800 . . . . . . 7 1 < 2
2423a1i 11 . . . . . 6 (𝜑 → 1 < 2)
2520, 2, 24ltled 10781 . . . . 5 (𝜑 → 1 ≤ 2)
2620, 2, 22, 25leadd2dd 11248 . . . 4 (𝜑 → ((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2))
27 2z 12006 . . . . . . . 8 2 ∈ ℤ
2827a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
295nnzd 12078 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
3028, 29zmulcld 12085 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
3130peano2zd 12082 . . . . 5 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
3230, 28zaddcld 12083 . . . . 5 (𝜑 → ((2 · 𝑁) + 2) ∈ ℤ)
332, 31, 32, 24leexp2d 13615 . . . 4 (𝜑 → (((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2) ↔ (2↑((2 · 𝑁) + 1)) ≤ (2↑((2 · 𝑁) + 2))))
3426, 33mpbid 235 . . 3 (𝜑 → (2↑((2 · 𝑁) + 1)) ≤ (2↑((2 · 𝑁) + 2)))
35 lcmineqlem22.2 . . . 4 (𝜑 → 4 ≤ 𝑁)
365, 35lcmineqlem21 39330 . . 3 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
3711, 13, 19, 34, 36letrd 10790 . 2 (𝜑 → (2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
38 fz1ssnn 12937 . . . . . 6 (1...((2 · 𝑁) + 2)) ⊆ ℕ
39 fzfi 13339 . . . . . 6 (1...((2 · 𝑁) + 2)) ∈ Fin
40 lcmfnncl 15966 . . . . . 6 (((1...((2 · 𝑁) + 2)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 2)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ)
4138, 39, 40mp2an 691 . . . . 5 (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ
4241a1i 11 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ)
4342nnred 11644 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℝ)
4418nnzd 12078 . . . . . . . 8 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ)
4544, 32jca 515 . . . . . . 7 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 · 𝑁) + 2) ∈ ℤ))
46 dvdslcm 15935 . . . . . . 7 (((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 · 𝑁) + 2) ∈ ℤ) → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)) ∧ ((2 · 𝑁) + 2) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))))
4745, 46syl 17 . . . . . 6 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)) ∧ ((2 · 𝑁) + 2) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))))
4847simpld 498 . . . . 5 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))
49 2nn 11702 . . . . . . . . . 10 2 ∈ ℕ
5049a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ)
5150, 5nnmulcld 11682 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℕ)
5251, 50nnaddcld 11681 . . . . . . 7 (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ)
5352lcmfunnnd 39293 . . . . . 6 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) = ((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2)))
5422recnd 10662 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
552recnd 10662 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
56 1cnd 10629 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
5754, 55, 56addsubassd 11010 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 · 𝑁) + (2 − 1)))
58 2m1e1 11755 . . . . . . . . . . 11 (2 − 1) = 1
5958oveq2i 7150 . . . . . . . . . 10 ((2 · 𝑁) + (2 − 1)) = ((2 · 𝑁) + 1)
6057, 59eqtrdi 2852 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 · 𝑁) + 1))
6160oveq2d 7155 . . . . . . . 8 (𝜑 → (1...(((2 · 𝑁) + 2) − 1)) = (1...((2 · 𝑁) + 1)))
6261fveq2d 6653 . . . . . . 7 (𝜑 → (lcm‘(1...(((2 · 𝑁) + 2) − 1))) = (lcm‘(1...((2 · 𝑁) + 1))))
6362oveq1d 7154 . . . . . 6 (𝜑 → ((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2)) = ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))
6453, 63eqtrd 2836 . . . . 5 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) = ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))
6548, 64breqtrrd 5061 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 2))))
6644, 42jca 515 . . . . 5 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ))
67 dvdsle 15655 . . . . 5 (((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ) → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 2))) → (lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
6866, 67syl 17 . . . 4 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 2))) → (lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
6965, 68mpd 15 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2 · 𝑁) + 2))))
7013, 19, 43, 36, 69letrd 10790 . 2 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2))))
7137, 70jca 515 1 (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wss 3884   class class class wbr 5033  cfv 6328  (class class class)co 7139  Fincfn 8496  cr 10529  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863  cn 11629  2c2 11684  4c4 11686  0cn0 11889  cz 11973  ...cfz 12889  cexp 13429  cdvds 15602   lcm clcm 15925  lcmclcmf 15926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-symdif 4172  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-prod 15255  df-dvds 15603  df-gcd 15837  df-lcm 15927  df-lcmf 15928  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24071  df-vol 24072  df-mbf 24226  df-itg1 24227  df-itg2 24228  df-ibl 24229  df-itg 24230  df-0p 24277  df-limc 24472  df-dv 24473
This theorem is referenced by:  lcmineqlem23  39332
  Copyright terms: Public domain W3C validator