Proof of Theorem lcmineqlem22
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2re 12341 | . . . . 5
⊢ 2 ∈
ℝ | 
| 2 | 1 | a1i 11 | . . . 4
⊢ (𝜑 → 2 ∈
ℝ) | 
| 3 |  | 2nn0 12545 | . . . . . . 7
⊢ 2 ∈
ℕ0 | 
| 4 | 3 | a1i 11 | . . . . . 6
⊢ (𝜑 → 2 ∈
ℕ0) | 
| 5 |  | lcmineqlem22.1 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 6 | 5 | nnnn0d 12589 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 7 | 4, 6 | nn0mulcld 12594 | . . . . 5
⊢ (𝜑 → (2 · 𝑁) ∈
ℕ0) | 
| 8 |  | 1nn0 12544 | . . . . . 6
⊢ 1 ∈
ℕ0 | 
| 9 | 8 | a1i 11 | . . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) | 
| 10 | 7, 9 | nn0addcld 12593 | . . . 4
⊢ (𝜑 → ((2 · 𝑁) + 1) ∈
ℕ0) | 
| 11 | 2, 10 | reexpcld 14204 | . . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 1)) ∈
ℝ) | 
| 12 | 7, 4 | nn0addcld 12593 | . . . 4
⊢ (𝜑 → ((2 · 𝑁) + 2) ∈
ℕ0) | 
| 13 | 2, 12 | reexpcld 14204 | . . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ∈
ℝ) | 
| 14 |  | fz1ssnn 13596 | . . . . . 6
⊢ (1...((2
· 𝑁) + 1)) ⊆
ℕ | 
| 15 |  | fzfi 14014 | . . . . . 6
⊢ (1...((2
· 𝑁) + 1)) ∈
Fin | 
| 16 |  | lcmfnncl 16667 | . . . . . 6
⊢
(((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2
· 𝑁) + 1)) ∈
Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) | 
| 17 | 14, 15, 16 | mp2an 692 | . . . . 5
⊢
(lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ | 
| 18 | 17 | a1i 11 | . . . 4
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∈
ℕ) | 
| 19 | 18 | nnred 12282 | . . 3
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∈
ℝ) | 
| 20 |  | 1red 11263 | . . . . 5
⊢ (𝜑 → 1 ∈
ℝ) | 
| 21 | 5 | nnred 12282 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 22 | 2, 21 | remulcld 11292 | . . . . 5
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) | 
| 23 |  | 1lt2 12438 | . . . . . . 7
⊢ 1 <
2 | 
| 24 | 23 | a1i 11 | . . . . . 6
⊢ (𝜑 → 1 < 2) | 
| 25 | 20, 2, 24 | ltled 11410 | . . . . 5
⊢ (𝜑 → 1 ≤ 2) | 
| 26 | 20, 2, 22, 25 | leadd2dd 11879 | . . . 4
⊢ (𝜑 → ((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2)) | 
| 27 |  | 2z 12651 | . . . . . . . 8
⊢ 2 ∈
ℤ | 
| 28 | 27 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 2 ∈
ℤ) | 
| 29 | 5 | nnzd 12642 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 30 | 28, 29 | zmulcld 12730 | . . . . . 6
⊢ (𝜑 → (2 · 𝑁) ∈
ℤ) | 
| 31 | 30 | peano2zd 12727 | . . . . 5
⊢ (𝜑 → ((2 · 𝑁) + 1) ∈
ℤ) | 
| 32 | 30, 28 | zaddcld 12728 | . . . . 5
⊢ (𝜑 → ((2 · 𝑁) + 2) ∈
ℤ) | 
| 33 | 2, 31, 32, 24 | leexp2d 14292 | . . . 4
⊢ (𝜑 → (((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2) ↔ (2↑((2
· 𝑁) + 1)) ≤
(2↑((2 · 𝑁) +
2)))) | 
| 34 | 26, 33 | mpbid 232 | . . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 1)) ≤ (2↑((2
· 𝑁) +
2))) | 
| 35 |  | lcmineqlem22.2 | . . . 4
⊢ (𝜑 → 4 ≤ 𝑁) | 
| 36 | 5, 35 | lcmineqlem21 42051 | . . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤
(lcm‘(1...((2 · 𝑁) + 1)))) | 
| 37 | 11, 13, 19, 34, 36 | letrd 11419 | . 2
⊢ (𝜑 → (2↑((2 · 𝑁) + 1)) ≤
(lcm‘(1...((2 · 𝑁) + 1)))) | 
| 38 |  | fz1ssnn 13596 | . . . . . 6
⊢ (1...((2
· 𝑁) + 2)) ⊆
ℕ | 
| 39 |  | fzfi 14014 | . . . . . 6
⊢ (1...((2
· 𝑁) + 2)) ∈
Fin | 
| 40 |  | lcmfnncl 16667 | . . . . . 6
⊢
(((1...((2 · 𝑁) + 2)) ⊆ ℕ ∧ (1...((2
· 𝑁) + 2)) ∈
Fin) → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ) | 
| 41 | 38, 39, 40 | mp2an 692 | . . . . 5
⊢
(lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ | 
| 42 | 41 | a1i 11 | . . . 4
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) ∈
ℕ) | 
| 43 | 42 | nnred 12282 | . . 3
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) ∈
ℝ) | 
| 44 | 18 | nnzd 12642 | . . . . . . . 8
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∈
ℤ) | 
| 45 | 44, 32 | jca 511 | . . . . . . 7
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 ·
𝑁) + 2) ∈
ℤ)) | 
| 46 |  | dvdslcm 16636 | . . . . . . 7
⊢
(((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 ·
𝑁) + 2) ∈ ℤ)
→ ((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2
· 𝑁) + 1))) lcm ((2
· 𝑁) + 2)) ∧ ((2
· 𝑁) + 2) ∥
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))) | 
| 47 | 45, 46 | syl 17 | . . . . . 6
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2
· 𝑁) + 1))) lcm ((2
· 𝑁) + 2)) ∧ ((2
· 𝑁) + 2) ∥
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))) | 
| 48 | 47 | simpld 494 | . . . . 5
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∥
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))) | 
| 49 |  | 2nn 12340 | . . . . . . . . . 10
⊢ 2 ∈
ℕ | 
| 50 | 49 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℕ) | 
| 51 | 50, 5 | nnmulcld 12320 | . . . . . . . 8
⊢ (𝜑 → (2 · 𝑁) ∈
ℕ) | 
| 52 | 51, 50 | nnaddcld 12319 | . . . . . . 7
⊢ (𝜑 → ((2 · 𝑁) + 2) ∈
ℕ) | 
| 53 | 52 | lcmfunnnd 42014 | . . . . . 6
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) =
((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2))) | 
| 54 | 22 | recnd 11290 | . . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) | 
| 55 | 2 | recnd 11290 | . . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℂ) | 
| 56 |  | 1cnd 11257 | . . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) | 
| 57 | 54, 55, 56 | addsubassd 11641 | . . . . . . . . . 10
⊢ (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 ·
𝑁) + (2 −
1))) | 
| 58 |  | 2m1e1 12393 | . . . . . . . . . . 11
⊢ (2
− 1) = 1 | 
| 59 | 58 | oveq2i 7443 | . . . . . . . . . 10
⊢ ((2
· 𝑁) + (2 −
1)) = ((2 · 𝑁) +
1) | 
| 60 | 57, 59 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 ·
𝑁) + 1)) | 
| 61 | 60 | oveq2d 7448 | . . . . . . . 8
⊢ (𝜑 → (1...(((2 · 𝑁) + 2) − 1)) = (1...((2
· 𝑁) +
1))) | 
| 62 | 61 | fveq2d 6909 | . . . . . . 7
⊢ (𝜑 →
(lcm‘(1...(((2 · 𝑁) + 2) − 1))) =
(lcm‘(1...((2 · 𝑁) + 1)))) | 
| 63 | 62 | oveq1d 7447 | . . . . . 6
⊢ (𝜑 →
((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2)) =
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))) | 
| 64 | 53, 63 | eqtrd 2776 | . . . . 5
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) =
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))) | 
| 65 | 48, 64 | breqtrrd 5170 | . . . 4
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∥
(lcm‘(1...((2 · 𝑁) + 2)))) | 
| 66 | 44, 42 | jca 511 | . . . . 5
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧
(lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ)) | 
| 67 |  | dvdsle 16348 | . . . . 5
⊢
(((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧
(lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ) →
((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2
· 𝑁) + 2))) →
(lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2
· 𝑁) +
2))))) | 
| 68 | 66, 67 | syl 17 | . . . 4
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2
· 𝑁) + 2))) →
(lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2
· 𝑁) +
2))))) | 
| 69 | 65, 68 | mpd 15 | . . 3
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ≤
(lcm‘(1...((2 · 𝑁) + 2)))) | 
| 70 | 13, 19, 43, 36, 69 | letrd 11419 | . 2
⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤
(lcm‘(1...((2 · 𝑁) + 2)))) | 
| 71 | 37, 70 | jca 511 | 1
⊢ (𝜑 → ((2↑((2 ·
𝑁) + 1)) ≤
(lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤
(lcm‘(1...((2 · 𝑁) + 2))))) |