Proof of Theorem lcmineqlem22
| Step | Hyp | Ref
| Expression |
| 1 | | 2re 12319 |
. . . . 5
⊢ 2 ∈
ℝ |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ) |
| 3 | | 2nn0 12523 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℕ0) |
| 5 | | lcmineqlem22.1 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 5 | nnnn0d 12567 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 7 | 4, 6 | nn0mulcld 12572 |
. . . . 5
⊢ (𝜑 → (2 · 𝑁) ∈
ℕ0) |
| 8 | | 1nn0 12522 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
| 10 | 7, 9 | nn0addcld 12571 |
. . . 4
⊢ (𝜑 → ((2 · 𝑁) + 1) ∈
ℕ0) |
| 11 | 2, 10 | reexpcld 14186 |
. . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 1)) ∈
ℝ) |
| 12 | 7, 4 | nn0addcld 12571 |
. . . 4
⊢ (𝜑 → ((2 · 𝑁) + 2) ∈
ℕ0) |
| 13 | 2, 12 | reexpcld 14186 |
. . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ∈
ℝ) |
| 14 | | fz1ssnn 13577 |
. . . . . 6
⊢ (1...((2
· 𝑁) + 1)) ⊆
ℕ |
| 15 | | fzfi 13995 |
. . . . . 6
⊢ (1...((2
· 𝑁) + 1)) ∈
Fin |
| 16 | | lcmfnncl 16653 |
. . . . . 6
⊢
(((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2
· 𝑁) + 1)) ∈
Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) |
| 17 | 14, 15, 16 | mp2an 692 |
. . . . 5
⊢
(lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ |
| 18 | 17 | a1i 11 |
. . . 4
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∈
ℕ) |
| 19 | 18 | nnred 12260 |
. . 3
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∈
ℝ) |
| 20 | | 1red 11241 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
| 21 | 5 | nnred 12260 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 22 | 2, 21 | remulcld 11270 |
. . . . 5
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) |
| 23 | | 1lt2 12416 |
. . . . . . 7
⊢ 1 <
2 |
| 24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 < 2) |
| 25 | 20, 2, 24 | ltled 11388 |
. . . . 5
⊢ (𝜑 → 1 ≤ 2) |
| 26 | 20, 2, 22, 25 | leadd2dd 11857 |
. . . 4
⊢ (𝜑 → ((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2)) |
| 27 | | 2z 12629 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℤ) |
| 29 | 5 | nnzd 12620 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 30 | 28, 29 | zmulcld 12708 |
. . . . . 6
⊢ (𝜑 → (2 · 𝑁) ∈
ℤ) |
| 31 | 30 | peano2zd 12705 |
. . . . 5
⊢ (𝜑 → ((2 · 𝑁) + 1) ∈
ℤ) |
| 32 | 30, 28 | zaddcld 12706 |
. . . . 5
⊢ (𝜑 → ((2 · 𝑁) + 2) ∈
ℤ) |
| 33 | 2, 31, 32, 24 | leexp2d 14275 |
. . . 4
⊢ (𝜑 → (((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2) ↔ (2↑((2
· 𝑁) + 1)) ≤
(2↑((2 · 𝑁) +
2)))) |
| 34 | 26, 33 | mpbid 232 |
. . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 1)) ≤ (2↑((2
· 𝑁) +
2))) |
| 35 | | lcmineqlem22.2 |
. . . 4
⊢ (𝜑 → 4 ≤ 𝑁) |
| 36 | 5, 35 | lcmineqlem21 42067 |
. . 3
⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤
(lcm‘(1...((2 · 𝑁) + 1)))) |
| 37 | 11, 13, 19, 34, 36 | letrd 11397 |
. 2
⊢ (𝜑 → (2↑((2 · 𝑁) + 1)) ≤
(lcm‘(1...((2 · 𝑁) + 1)))) |
| 38 | | fz1ssnn 13577 |
. . . . . 6
⊢ (1...((2
· 𝑁) + 2)) ⊆
ℕ |
| 39 | | fzfi 13995 |
. . . . . 6
⊢ (1...((2
· 𝑁) + 2)) ∈
Fin |
| 40 | | lcmfnncl 16653 |
. . . . . 6
⊢
(((1...((2 · 𝑁) + 2)) ⊆ ℕ ∧ (1...((2
· 𝑁) + 2)) ∈
Fin) → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ) |
| 41 | 38, 39, 40 | mp2an 692 |
. . . . 5
⊢
(lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ |
| 42 | 41 | a1i 11 |
. . . 4
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) ∈
ℕ) |
| 43 | 42 | nnred 12260 |
. . 3
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) ∈
ℝ) |
| 44 | 18 | nnzd 12620 |
. . . . . . . 8
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∈
ℤ) |
| 45 | 44, 32 | jca 511 |
. . . . . . 7
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 ·
𝑁) + 2) ∈
ℤ)) |
| 46 | | dvdslcm 16622 |
. . . . . . 7
⊢
(((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 ·
𝑁) + 2) ∈ ℤ)
→ ((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2
· 𝑁) + 1))) lcm ((2
· 𝑁) + 2)) ∧ ((2
· 𝑁) + 2) ∥
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))) |
| 47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2
· 𝑁) + 1))) lcm ((2
· 𝑁) + 2)) ∧ ((2
· 𝑁) + 2) ∥
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))) |
| 48 | 47 | simpld 494 |
. . . . 5
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∥
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))) |
| 49 | | 2nn 12318 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℕ) |
| 51 | 50, 5 | nnmulcld 12298 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝑁) ∈
ℕ) |
| 52 | 51, 50 | nnaddcld 12297 |
. . . . . . 7
⊢ (𝜑 → ((2 · 𝑁) + 2) ∈
ℕ) |
| 53 | 52 | lcmfunnnd 42030 |
. . . . . 6
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) =
((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2))) |
| 54 | 22 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) |
| 55 | 2 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℂ) |
| 56 | | 1cnd 11235 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
| 57 | 54, 55, 56 | addsubassd 11619 |
. . . . . . . . . 10
⊢ (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 ·
𝑁) + (2 −
1))) |
| 58 | | 2m1e1 12371 |
. . . . . . . . . . 11
⊢ (2
− 1) = 1 |
| 59 | 58 | oveq2i 7421 |
. . . . . . . . . 10
⊢ ((2
· 𝑁) + (2 −
1)) = ((2 · 𝑁) +
1) |
| 60 | 57, 59 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 ·
𝑁) + 1)) |
| 61 | 60 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝜑 → (1...(((2 · 𝑁) + 2) − 1)) = (1...((2
· 𝑁) +
1))) |
| 62 | 61 | fveq2d 6885 |
. . . . . . 7
⊢ (𝜑 →
(lcm‘(1...(((2 · 𝑁) + 2) − 1))) =
(lcm‘(1...((2 · 𝑁) + 1)))) |
| 63 | 62 | oveq1d 7425 |
. . . . . 6
⊢ (𝜑 →
((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2)) =
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))) |
| 64 | 53, 63 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 2))) =
((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))) |
| 65 | 48, 64 | breqtrrd 5152 |
. . . 4
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ∥
(lcm‘(1...((2 · 𝑁) + 2)))) |
| 66 | 44, 42 | jca 511 |
. . . . 5
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧
(lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ)) |
| 67 | | dvdsle 16334 |
. . . . 5
⊢
(((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧
(lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ) →
((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2
· 𝑁) + 2))) →
(lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2
· 𝑁) +
2))))) |
| 68 | 66, 67 | syl 17 |
. . . 4
⊢ (𝜑 →
((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2
· 𝑁) + 2))) →
(lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2
· 𝑁) +
2))))) |
| 69 | 65, 68 | mpd 15 |
. . 3
⊢ (𝜑 → (lcm‘(1...((2
· 𝑁) + 1))) ≤
(lcm‘(1...((2 · 𝑁) + 2)))) |
| 70 | 13, 19, 43, 36, 69 | letrd 11397 |
. 2
⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤
(lcm‘(1...((2 · 𝑁) + 2)))) |
| 71 | 37, 70 | jca 511 |
1
⊢ (𝜑 → ((2↑((2 ·
𝑁) + 1)) ≤
(lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤
(lcm‘(1...((2 · 𝑁) + 2))))) |