Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem22 Structured version   Visualization version   GIF version

Theorem lcmineqlem22 39331
 Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem22.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem22.2 (𝜑 → 4 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem22 (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))

Proof of Theorem lcmineqlem22
StepHypRef Expression
1 2re 11703 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
3 2nn0 11906 . . . . . . 7 2 ∈ ℕ0
43a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ0)
5 lcmineqlem22.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11947 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
74, 6nn0mulcld 11952 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℕ0)
8 1nn0 11905 . . . . . 6 1 ∈ ℕ0
98a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
107, 9nn0addcld 11951 . . . 4 (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ0)
112, 10reexpcld 13527 . . 3 (𝜑 → (2↑((2 · 𝑁) + 1)) ∈ ℝ)
127, 4nn0addcld 11951 . . . 4 (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ0)
132, 12reexpcld 13527 . . 3 (𝜑 → (2↑((2 · 𝑁) + 2)) ∈ ℝ)
14 fz1ssnn 12937 . . . . . 6 (1...((2 · 𝑁) + 1)) ⊆ ℕ
15 fzfi 13339 . . . . . 6 (1...((2 · 𝑁) + 1)) ∈ Fin
16 lcmfnncl 15966 . . . . . 6 (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
1714, 15, 16mp2an 691 . . . . 5 (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ
1817a1i 11 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
1918nnred 11644 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℝ)
20 1red 10635 . . . . 5 (𝜑 → 1 ∈ ℝ)
215nnred 11644 . . . . . 6 (𝜑𝑁 ∈ ℝ)
222, 21remulcld 10664 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ)
23 1lt2 11800 . . . . . . 7 1 < 2
2423a1i 11 . . . . . 6 (𝜑 → 1 < 2)
2520, 2, 24ltled 10781 . . . . 5 (𝜑 → 1 ≤ 2)
2620, 2, 22, 25leadd2dd 11248 . . . 4 (𝜑 → ((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2))
27 2z 12006 . . . . . . . 8 2 ∈ ℤ
2827a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
295nnzd 12078 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
3028, 29zmulcld 12085 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
3130peano2zd 12082 . . . . 5 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
3230, 28zaddcld 12083 . . . . 5 (𝜑 → ((2 · 𝑁) + 2) ∈ ℤ)
332, 31, 32, 24leexp2d 13615 . . . 4 (𝜑 → (((2 · 𝑁) + 1) ≤ ((2 · 𝑁) + 2) ↔ (2↑((2 · 𝑁) + 1)) ≤ (2↑((2 · 𝑁) + 2))))
3426, 33mpbid 235 . . 3 (𝜑 → (2↑((2 · 𝑁) + 1)) ≤ (2↑((2 · 𝑁) + 2)))
35 lcmineqlem22.2 . . . 4 (𝜑 → 4 ≤ 𝑁)
365, 35lcmineqlem21 39330 . . 3 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
3711, 13, 19, 34, 36letrd 10790 . 2 (𝜑 → (2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
38 fz1ssnn 12937 . . . . . 6 (1...((2 · 𝑁) + 2)) ⊆ ℕ
39 fzfi 13339 . . . . . 6 (1...((2 · 𝑁) + 2)) ∈ Fin
40 lcmfnncl 15966 . . . . . 6 (((1...((2 · 𝑁) + 2)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 2)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ)
4138, 39, 40mp2an 691 . . . . 5 (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ
4241a1i 11 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ)
4342nnred 11644 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℝ)
4418nnzd 12078 . . . . . . . 8 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ)
4544, 32jca 515 . . . . . . 7 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 · 𝑁) + 2) ∈ ℤ))
46 dvdslcm 15935 . . . . . . 7 (((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ ((2 · 𝑁) + 2) ∈ ℤ) → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)) ∧ ((2 · 𝑁) + 2) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))))
4745, 46syl 17 . . . . . 6 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)) ∧ ((2 · 𝑁) + 2) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2))))
4847simpld 498 . . . . 5 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∥ ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))
49 2nn 11702 . . . . . . . . . 10 2 ∈ ℕ
5049a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ)
5150, 5nnmulcld 11682 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℕ)
5251, 50nnaddcld 11681 . . . . . . 7 (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ)
5352lcmfunnnd 39293 . . . . . 6 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) = ((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2)))
5422recnd 10662 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
552recnd 10662 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
56 1cnd 10629 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
5754, 55, 56addsubassd 11010 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 · 𝑁) + (2 − 1)))
58 2m1e1 11755 . . . . . . . . . . 11 (2 − 1) = 1
5958oveq2i 7150 . . . . . . . . . 10 ((2 · 𝑁) + (2 − 1)) = ((2 · 𝑁) + 1)
6057, 59eqtrdi 2852 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 2) − 1) = ((2 · 𝑁) + 1))
6160oveq2d 7155 . . . . . . . 8 (𝜑 → (1...(((2 · 𝑁) + 2) − 1)) = (1...((2 · 𝑁) + 1)))
6261fveq2d 6653 . . . . . . 7 (𝜑 → (lcm‘(1...(((2 · 𝑁) + 2) − 1))) = (lcm‘(1...((2 · 𝑁) + 1))))
6362oveq1d 7154 . . . . . 6 (𝜑 → ((lcm‘(1...(((2 · 𝑁) + 2) − 1))) lcm ((2 · 𝑁) + 2)) = ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))
6453, 63eqtrd 2836 . . . . 5 (𝜑 → (lcm‘(1...((2 · 𝑁) + 2))) = ((lcm‘(1...((2 · 𝑁) + 1))) lcm ((2 · 𝑁) + 2)))
6548, 64breqtrrd 5061 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 2))))
6644, 42jca 515 . . . . 5 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ))
67 dvdsle 15655 . . . . 5 (((lcm‘(1...((2 · 𝑁) + 1))) ∈ ℤ ∧ (lcm‘(1...((2 · 𝑁) + 2))) ∈ ℕ) → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 2))) → (lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
6866, 67syl 17 . . . 4 (𝜑 → ((lcm‘(1...((2 · 𝑁) + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 2))) → (lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
6965, 68mpd 15 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ≤ (lcm‘(1...((2 · 𝑁) + 2))))
7013, 19, 43, 36, 69letrd 10790 . 2 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2))))
7137, 70jca 515 1 (𝜑 → ((2↑((2 · 𝑁) + 1)) ≤ (lcm‘(1...((2 · 𝑁) + 1))) ∧ (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 2)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2112   ⊆ wss 3884   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Fincfn 8496  ℝcr 10529  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863  ℕcn 11629  2c2 11684  4c4 11686  ℕ0cn0 11889  ℤcz 11973  ...cfz 12889  ↑cexp 13429   ∥ cdvds 15602   lcm clcm 15925  lcmclcmf 15926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-symdif 4172  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-prod 15255  df-dvds 15603  df-gcd 15837  df-lcm 15927  df-lcmf 15928  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24071  df-vol 24072  df-mbf 24226  df-itg1 24227  df-itg2 24228  df-ibl 24229  df-itg 24230  df-0p 24277  df-limc 24472  df-dv 24473 This theorem is referenced by:  lcmineqlem23  39332
 Copyright terms: Public domain W3C validator