| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgaplem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for prmgap 17079: The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmgaplem2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13537 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
| 3 | breq1 5122 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ ((!‘𝑁) + 𝐼) ↔ 𝐼 ∥ ((!‘𝑁) + 𝐼))) | |
| 4 | breq1 5122 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 7 | prmgaplem1 17069 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼)) | |
| 8 | elfzelz 13541 | . . . . . 6 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 9 | iddvds 16289 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
| 12 | 7, 11 | jca 511 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼)) |
| 13 | 2, 6, 12 | rspcedvd 3603 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼)) |
| 14 | nnnn0 12508 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 15 | 14 | faccld 14302 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 17 | eluz2nn 12898 | . . . . . 6 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
| 20 | 16, 19 | nnaddcld 12292 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((!‘𝑁) + 𝐼) ∈ ℕ) |
| 21 | ncoprmgcdgt1b 16670 | . . 3 ⊢ ((((!‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) | |
| 22 | 20, 19, 21 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) |
| 23 | 13, 22 | mpbid 232 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 < clt 11269 ℕcn 12240 2c2 12295 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13524 !cfa 14291 ∥ cdvds 16272 gcd cgcd 16513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-fac 14292 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 |
| This theorem is referenced by: prmgap 17079 |
| Copyright terms: Public domain | W3C validator |