MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem2 Structured version   Visualization version   GIF version

Theorem prmgaplem2 16679
Description: Lemma for prmgap 16688: The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.)
Assertion
Ref Expression
prmgaplem2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))

Proof of Theorem prmgaplem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 13181 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
21adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ‘2))
3 breq1 5073 . . . . 5 (𝑖 = 𝐼 → (𝑖 ∥ ((!‘𝑁) + 𝐼) ↔ 𝐼 ∥ ((!‘𝑁) + 𝐼)))
4 breq1 5073 . . . . 5 (𝑖 = 𝐼 → (𝑖𝐼𝐼𝐼))
53, 4anbi12d 630 . . . 4 (𝑖 = 𝐼 → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼𝐼)))
65adantl 481 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼𝐼)))
7 prmgaplem1 16678 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼))
8 elfzelz 13185 . . . . . 6 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
9 iddvds 15907 . . . . . 6 (𝐼 ∈ ℤ → 𝐼𝐼)
108, 9syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼𝐼)
1110adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼𝐼)
127, 11jca 511 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼𝐼))
132, 6, 12rspcedvd 3555 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖𝐼))
14 nnnn0 12170 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1514faccld 13926 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
1615adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (!‘𝑁) ∈ ℕ)
17 eluz2nn 12553 . . . . . 6 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
181, 17syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
1918adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
2016, 19nnaddcld 11955 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((!‘𝑁) + 𝐼) ∈ ℕ)
21 ncoprmgcdgt1b 16284 . . 3 ((((!‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)))
2220, 19, 21syl2anc 583 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)))
2313, 22mpbid 231 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805   < clt 10940  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168  !cfa 13915  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-fac 13916  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  prmgap  16688
  Copyright terms: Public domain W3C validator