| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgaplem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for prmgap 17097: The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmgaplem2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13560 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
| 3 | breq1 5146 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ ((!‘𝑁) + 𝐼) ↔ 𝐼 ∥ ((!‘𝑁) + 𝐼))) | |
| 4 | breq1 5146 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 7 | prmgaplem1 17087 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼)) | |
| 8 | elfzelz 13564 | . . . . . 6 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 9 | iddvds 16307 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
| 12 | 7, 11 | jca 511 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼)) |
| 13 | 2, 6, 12 | rspcedvd 3624 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼)) |
| 14 | nnnn0 12533 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 15 | 14 | faccld 14323 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 17 | eluz2nn 12924 | . . . . . 6 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
| 20 | 16, 19 | nnaddcld 12318 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((!‘𝑁) + 𝐼) ∈ ℕ) |
| 21 | ncoprmgcdgt1b 16688 | . . 3 ⊢ ((((!‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) | |
| 22 | 20, 19, 21 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) |
| 23 | 13, 22 | mpbid 232 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 1c1 11156 + caddc 11158 < clt 11295 ℕcn 12266 2c2 12321 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 !cfa 14312 ∥ cdvds 16290 gcd cgcd 16531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-seq 14043 df-exp 14103 df-fac 14313 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 |
| This theorem is referenced by: prmgap 17097 |
| Copyright terms: Public domain | W3C validator |