![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmgaplem2 | Structured version Visualization version GIF version |
Description: Lemma for prmgap 17025: The factorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
Ref | Expression |
---|---|
prmgaplem2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13527 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
2 | 1 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
3 | breq1 5146 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ ((!‘𝑁) + 𝐼) ↔ 𝐼 ∥ ((!‘𝑁) + 𝐼))) | |
4 | breq1 5146 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
6 | 5 | adantl 480 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
7 | prmgaplem1 17015 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼)) | |
8 | elfzelz 13531 | . . . . . 6 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
9 | iddvds 16244 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
11 | 10 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
12 | 7, 11 | jca 510 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼)) |
13 | 2, 6, 12 | rspcedvd 3604 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼)) |
14 | nnnn0 12507 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | 14 | faccld 14273 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
16 | 15 | adantr 479 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (!‘𝑁) ∈ ℕ) |
17 | eluz2nn 12896 | . . . . . 6 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
19 | 18 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
20 | 16, 19 | nnaddcld 12292 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((!‘𝑁) + 𝐼) ∈ ℕ) |
21 | ncoprmgcdgt1b 16619 | . . 3 ⊢ ((((!‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) | |
22 | 20, 19, 21 | syl2anc 582 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) |
23 | 13, 22 | mpbid 231 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 class class class wbr 5143 ‘cfv 6542 (class class class)co 7415 1c1 11137 + caddc 11139 < clt 11276 ℕcn 12240 2c2 12295 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13514 !cfa 14262 ∥ cdvds 16228 gcd cgcd 16466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-fz 13515 df-seq 13997 df-exp 14057 df-fac 14263 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-dvds 16229 df-gcd 16467 |
This theorem is referenced by: prmgap 17025 |
Copyright terms: Public domain | W3C validator |