| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgaplem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for prmgap 16971: The factorial of a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 13-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmgaplem2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13420 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
| 3 | breq1 5092 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ ((!‘𝑁) + 𝐼) ↔ 𝐼 ∥ ((!‘𝑁) + 𝐼))) | |
| 4 | breq1 5092 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 7 | prmgaplem1 16961 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((!‘𝑁) + 𝐼)) | |
| 8 | elfzelz 13424 | . . . . . 6 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 9 | iddvds 16180 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
| 12 | 7, 11 | jca 511 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((!‘𝑁) + 𝐼) ∧ 𝐼 ∥ 𝐼)) |
| 13 | 2, 6, 12 | rspcedvd 3574 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼)) |
| 14 | nnnn0 12388 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 15 | 14 | faccld 14191 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 17 | eluz2nn 12786 | . . . . . 6 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
| 18 | 1, 17 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
| 20 | 16, 19 | nnaddcld 12177 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((!‘𝑁) + 𝐼) ∈ ℕ) |
| 21 | ncoprmgcdgt1b 16562 | . . 3 ⊢ ((((!‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) | |
| 22 | 20, 19, 21 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((!‘𝑁) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((!‘𝑁) + 𝐼) gcd 𝐼))) |
| 23 | 13, 22 | mpbid 232 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((!‘𝑁) + 𝐼) gcd 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 < clt 11146 ℕcn 12125 2c2 12180 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 !cfa 14180 ∥ cdvds 16163 gcd cgcd 16405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-fac 14181 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 |
| This theorem is referenced by: prmgap 16971 |
| Copyright terms: Public domain | W3C validator |