MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2OLD Structured version   Visualization version   GIF version

Theorem dvcnp2OLD 25850
Description: Obsolete version of dvcnp2 25849 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾t 𝐴)
dvcnp.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcnp2OLD (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem dvcnp2OLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ)
21ffvelcdmda 7023 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3 dvcnp.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
43cnfldtop 24699 . . . . . . . . . . . . 13 𝐾 ∈ Top
5 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ)
6 cnex 11094 . . . . . . . . . . . . . 14 ℂ ∈ V
7 ssexg 5263 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
85, 6, 7sylancl 586 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V)
9 resttop 23076 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
104, 8, 9sylancr 587 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ Top)
11 simpl3 1194 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴𝑆)
123cnfldtopon 24698 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 23077 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 587 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
15 toponuni 22830 . . . . . . . . . . . . . 14 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
1614, 15syl 17 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = (𝐾t 𝑆))
1711, 16sseqtrd 3967 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 (𝐾t 𝑆))
18 eqid 2733 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
1918ntrss2 22973 . . . . . . . . . . . 12 (((𝐾t 𝑆) ∈ Top ∧ 𝐴 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
2010, 17, 19syl2anc 584 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
21 eqid 2733 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
22 eqid 2733 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
23 simp1 1136 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
24 simp2 1137 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
25 simp3 1138 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
2621, 3, 22, 23, 24, 25eldv 25827 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
2726simprbda 498 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
2820, 27sseldd 3931 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
291, 28ffvelcdmd 7024 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ℂ)
3029adantr 480 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
312, 30subcld 11479 . . . . . . 7 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
32 ssid 3953 . . . . . . . 8 ℂ ⊆ ℂ
3332a1i 11 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆ ℂ)
34 txtopon 23507 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
3512, 12, 34mp2an 692 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
3635toponrestid 22837 . . . . . . 7 (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ × ℂ))
3711, 5sstrd 3941 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ)
381, 37, 28dvlem 25825 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
3937ssdifssd 4096 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
4039sselda 3930 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
4137, 28sseldd 3931 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
4241adantr 480 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
4340, 42subcld 11479 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
4426simplbda 499 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))
45 limcresi 25814 . . . . . . . . . . . 12 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
46 difss 4085 . . . . . . . . . . . . . 14 (𝐴 ∖ {𝐵}) ⊆ 𝐴
47 resmpt 5990 . . . . . . . . . . . . . 14 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)))
4846, 47ax-mp 5 . . . . . . . . . . . . 13 ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵))
4948oveq1i 7362 . . . . . . . . . . . 12 (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5045, 49sseqtri 3979 . . . . . . . . . . 11 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5141subidd 11467 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) = 0)
523subcn 24783 . . . . . . . . . . . . . . 15 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5352a1i 11 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
54 cncfmptid 24834 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
5537, 32, 54sylancl 586 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
56 cncfmptc 24833 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
5741, 37, 33, 56syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
583, 53, 55, 57cncfmpt2f 24836 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝑧𝐵)) ∈ (𝐴cn→ℂ))
59 oveq1 7359 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (𝑧𝐵) = (𝐵𝐵))
6058, 28, 59cnmptlimc 25819 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6151, 60eqeltrrd 2834 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6250, 61sselid 3928 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵))
633mulcn 24784 . . . . . . . . . . 11 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6423, 24, 25dvcl 25828 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
65 0cn 11111 . . . . . . . . . . . 12 0 ∈ ℂ
66 opelxpi 5656 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6764, 65, 66sylancl 586 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6835toponunii 22832 . . . . . . . . . . . 12 (ℂ × ℂ) = (𝐾 ×t 𝐾)
6968cncnpi 23194 . . . . . . . . . . 11 (( · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨𝑦, 0⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7063, 67, 69sylancr 587 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7138, 43, 33, 33, 3, 36, 44, 62, 70limccnp2 25821 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
7264mul01d 11319 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0)
731adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ)
74 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
7546, 74sselid 3928 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐴)
7673, 75ffvelcdmd 7024 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
7729adantr 480 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝐵) ∈ ℂ)
7876, 77subcld 11479 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
79 eldifsni 4741 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
8079adantl 481 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐵)
8140, 42, 80subne0d 11488 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ≠ 0)
8278, 43, 81divcan1d 11905 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)) = ((𝐹𝑧) − (𝐹𝐵)))
8382mpteq2dva 5186 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
8483oveq1d 7367 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
8571, 72, 843eltr3d 2847 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
8631fmpttd 7054 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))):𝐴⟶ℂ)
8786limcdif 25805 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
88 resmpt 5990 . . . . . . . . . . 11 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
8946, 88ax-mp 5 . . . . . . . . . 10 ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵)))
9089oveq1i 7362 . . . . . . . . 9 (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵)
9187, 90eqtrdi 2784 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
9285, 91eleqtrrd 2836 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
93 cncfmptc 24833 . . . . . . . . 9 (((𝐹𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
9429, 37, 33, 93syl3anc 1373 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
95 eqidd 2734 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝐵) = (𝐹𝐵))
9694, 28, 95cnmptlimc 25819 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ((𝑧𝐴 ↦ (𝐹𝐵)) lim 𝐵))
973addcn 24782 . . . . . . . 8 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
98 opelxpi 5656 . . . . . . . . 9 ((0 ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
9965, 29, 98sylancr 587 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
10068cncnpi 23194 . . . . . . . 8 (( + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
10197, 99, 100sylancr 587 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
10231, 30, 33, 33, 3, 36, 92, 96, 101limccnp2 25821 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) ∈ ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵))
10329addlidd 11321 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) = (𝐹𝐵))
1042, 30npcand 11483 . . . . . . . . 9 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵)) = (𝐹𝑧))
105104mpteq2dva 5186 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = (𝑧𝐴 ↦ (𝐹𝑧)))
1061feqmptd 6896 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
107105, 106eqtr4d 2771 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = 𝐹)
108107oveq1d 7367 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵) = (𝐹 lim 𝐵))
109102, 103, 1083eltr3d 2847 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
110 dvcnp.j . . . . . . 7 𝐽 = (𝐾t 𝐴)
1113, 110cnplimc 25816 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
11237, 28, 111syl2anc 584 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
1131, 109, 112mpbir2and 713 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
114113ex 412 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
115114exlimdv 1934 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
116 eldmg 5842 . . 3 (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦))
117116ibi 267 . 2 (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)
118115, 117impel 505 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  wss 3898  {csn 4575  cop 4581   cuni 4858   class class class wbr 5093  cmpt 5174   × cxp 5617  dom cdm 5619  cres 5621  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  t crest 17326  TopOpenctopn 17327  fldccnfld 21293  Topctop 22809  TopOnctopon 22826  intcnt 22933   Cn ccn 23140   CnP ccnp 23141   ×t ctx 23476  cnccncf 24797   lim climc 25791   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-ntr 22936  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator