MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2OLD Structured version   Visualization version   GIF version

Theorem dvcnp2OLD 25771
Description: Obsolete version of dvcnp2 25770 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾 β†Ύt 𝐴)
dvcnp.k 𝐾 = (TopOpenβ€˜β„‚fld)
Assertion
Ref Expression
dvcnp2OLD (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡 ∈ dom (𝑆 D 𝐹)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅))

Proof of Theorem dvcnp2OLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . . . . 5 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐹:π΄βŸΆβ„‚)
21ffvelcdmda 7076 . . . . . . . 8 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) β†’ (πΉβ€˜π‘§) ∈ β„‚)
3 dvcnp.k . . . . . . . . . . . . . 14 𝐾 = (TopOpenβ€˜β„‚fld)
43cnfldtop 24621 . . . . . . . . . . . . 13 𝐾 ∈ Top
5 simpl1 1188 . . . . . . . . . . . . . 14 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝑆 βŠ† β„‚)
6 cnex 11186 . . . . . . . . . . . . . 14 β„‚ ∈ V
7 ssexg 5313 . . . . . . . . . . . . . 14 ((𝑆 βŠ† β„‚ ∧ β„‚ ∈ V) β†’ 𝑆 ∈ V)
85, 6, 7sylancl 585 . . . . . . . . . . . . 13 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝑆 ∈ V)
9 resttop 22985 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) β†’ (𝐾 β†Ύt 𝑆) ∈ Top)
104, 8, 9sylancr 586 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝐾 β†Ύt 𝑆) ∈ Top)
11 simpl3 1190 . . . . . . . . . . . . 13 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐴 βŠ† 𝑆)
123cnfldtopon 24620 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOnβ€˜β„‚)
13 resttopon 22986 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOnβ€˜β„‚) ∧ 𝑆 βŠ† β„‚) β†’ (𝐾 β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†))
1412, 5, 13sylancr 586 . . . . . . . . . . . . . 14 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝐾 β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†))
15 toponuni 22737 . . . . . . . . . . . . . 14 ((𝐾 β†Ύt 𝑆) ∈ (TopOnβ€˜π‘†) β†’ 𝑆 = βˆͺ (𝐾 β†Ύt 𝑆))
1614, 15syl 17 . . . . . . . . . . . . 13 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝑆 = βˆͺ (𝐾 β†Ύt 𝑆))
1711, 16sseqtrd 4014 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐴 βŠ† βˆͺ (𝐾 β†Ύt 𝑆))
18 eqid 2724 . . . . . . . . . . . . 13 βˆͺ (𝐾 β†Ύt 𝑆) = βˆͺ (𝐾 β†Ύt 𝑆)
1918ntrss2 22882 . . . . . . . . . . . 12 (((𝐾 β†Ύt 𝑆) ∈ Top ∧ 𝐴 βŠ† βˆͺ (𝐾 β†Ύt 𝑆)) β†’ ((intβ€˜(𝐾 β†Ύt 𝑆))β€˜π΄) βŠ† 𝐴)
2010, 17, 19syl2anc 583 . . . . . . . . . . 11 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ ((intβ€˜(𝐾 β†Ύt 𝑆))β€˜π΄) βŠ† 𝐴)
21 eqid 2724 . . . . . . . . . . . . 13 (𝐾 β†Ύt 𝑆) = (𝐾 β†Ύt 𝑆)
22 eqid 2724 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡))) = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)))
23 simp1 1133 . . . . . . . . . . . . 13 ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ 𝑆 βŠ† β„‚)
24 simp2 1134 . . . . . . . . . . . . 13 ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ 𝐹:π΄βŸΆβ„‚)
25 simp3 1135 . . . . . . . . . . . . 13 ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ 𝐴 βŠ† 𝑆)
2621, 3, 22, 23, 24, 25eldv 25748 . . . . . . . . . . . 12 ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ (𝐡(𝑆 D 𝐹)𝑦 ↔ (𝐡 ∈ ((intβ€˜(𝐾 β†Ύt 𝑆))β€˜π΄) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡))) limβ„‚ 𝐡))))
2726simprbda 498 . . . . . . . . . . 11 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐡 ∈ ((intβ€˜(𝐾 β†Ύt 𝑆))β€˜π΄))
2820, 27sseldd 3975 . . . . . . . . . 10 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐡 ∈ 𝐴)
291, 28ffvelcdmd 7077 . . . . . . . . 9 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (πΉβ€˜π΅) ∈ β„‚)
3029adantr 480 . . . . . . . 8 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) β†’ (πΉβ€˜π΅) ∈ β„‚)
312, 30subcld 11567 . . . . . . 7 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) β†’ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) ∈ β„‚)
32 ssid 3996 . . . . . . . 8 β„‚ βŠ† β„‚
3332a1i 11 . . . . . . 7 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ β„‚ βŠ† β„‚)
34 txtopon 23416 . . . . . . . . 9 ((𝐾 ∈ (TopOnβ€˜β„‚) ∧ 𝐾 ∈ (TopOnβ€˜β„‚)) β†’ (𝐾 Γ—t 𝐾) ∈ (TopOnβ€˜(β„‚ Γ— β„‚)))
3512, 12, 34mp2an 689 . . . . . . . 8 (𝐾 Γ—t 𝐾) ∈ (TopOnβ€˜(β„‚ Γ— β„‚))
3635toponrestid 22744 . . . . . . 7 (𝐾 Γ—t 𝐾) = ((𝐾 Γ—t 𝐾) β†Ύt (β„‚ Γ— β„‚))
3711, 5sstrd 3984 . . . . . . . . . . 11 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐴 βŠ† β„‚)
381, 37, 28dvlem 25746 . . . . . . . . . 10 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)) ∈ β„‚)
3937ssdifssd 4134 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝐴 βˆ– {𝐡}) βŠ† β„‚)
4039sselda 3974 . . . . . . . . . . 11 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ 𝑧 ∈ β„‚)
4137, 28sseldd 3975 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐡 ∈ β„‚)
4241adantr 480 . . . . . . . . . . 11 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ 𝐡 ∈ β„‚)
4340, 42subcld 11567 . . . . . . . . . 10 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ (𝑧 βˆ’ 𝐡) ∈ β„‚)
4426simplbda 499 . . . . . . . . . 10 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝑦 ∈ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡))) limβ„‚ 𝐡))
45 limcresi 25735 . . . . . . . . . . . 12 ((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡) βŠ† (((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) β†Ύ (𝐴 βˆ– {𝐡})) limβ„‚ 𝐡)
46 difss 4123 . . . . . . . . . . . . . 14 (𝐴 βˆ– {𝐡}) βŠ† 𝐴
47 resmpt 6027 . . . . . . . . . . . . . 14 ((𝐴 βˆ– {𝐡}) βŠ† 𝐴 β†’ ((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) β†Ύ (𝐴 βˆ– {𝐡})) = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (𝑧 βˆ’ 𝐡)))
4846, 47ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) β†Ύ (𝐴 βˆ– {𝐡})) = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (𝑧 βˆ’ 𝐡))
4948oveq1i 7411 . . . . . . . . . . . 12 (((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) β†Ύ (𝐴 βˆ– {𝐡})) limβ„‚ 𝐡) = ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡)
5045, 49sseqtri 4010 . . . . . . . . . . 11 ((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡) βŠ† ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡)
5141subidd 11555 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝐡 βˆ’ 𝐡) = 0)
523subcn 24703 . . . . . . . . . . . . . . 15 βˆ’ ∈ ((𝐾 Γ—t 𝐾) Cn 𝐾)
5352a1i 11 . . . . . . . . . . . . . 14 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ βˆ’ ∈ ((𝐾 Γ—t 𝐾) Cn 𝐾))
54 cncfmptid 24754 . . . . . . . . . . . . . . 15 ((𝐴 βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (𝑧 ∈ 𝐴 ↦ 𝑧) ∈ (𝐴–cnβ†’β„‚))
5537, 32, 54sylancl 585 . . . . . . . . . . . . . 14 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ 𝑧) ∈ (𝐴–cnβ†’β„‚))
56 cncfmptc 24753 . . . . . . . . . . . . . . 15 ((𝐡 ∈ β„‚ ∧ 𝐴 βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (𝑧 ∈ 𝐴 ↦ 𝐡) ∈ (𝐴–cnβ†’β„‚))
5741, 37, 33, 56syl3anc 1368 . . . . . . . . . . . . . 14 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ 𝐡) ∈ (𝐴–cnβ†’β„‚))
583, 53, 55, 57cncfmpt2f 24756 . . . . . . . . . . . . 13 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) ∈ (𝐴–cnβ†’β„‚))
59 oveq1 7408 . . . . . . . . . . . . 13 (𝑧 = 𝐡 β†’ (𝑧 βˆ’ 𝐡) = (𝐡 βˆ’ 𝐡))
6058, 28, 59cnmptlimc 25740 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝐡 βˆ’ 𝐡) ∈ ((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡))
6151, 60eqeltrrd 2826 . . . . . . . . . . 11 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 0 ∈ ((𝑧 ∈ 𝐴 ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡))
6250, 61sselid 3972 . . . . . . . . . 10 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 0 ∈ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ (𝑧 βˆ’ 𝐡)) limβ„‚ 𝐡))
633mulcn 24704 . . . . . . . . . . 11 Β· ∈ ((𝐾 Γ—t 𝐾) Cn 𝐾)
6423, 24, 25dvcl 25749 . . . . . . . . . . . 12 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝑦 ∈ β„‚)
65 0cn 11202 . . . . . . . . . . . 12 0 ∈ β„‚
66 opelxpi 5703 . . . . . . . . . . . 12 ((𝑦 ∈ β„‚ ∧ 0 ∈ β„‚) β†’ βŸ¨π‘¦, 0⟩ ∈ (β„‚ Γ— β„‚))
6764, 65, 66sylancl 585 . . . . . . . . . . 11 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ βŸ¨π‘¦, 0⟩ ∈ (β„‚ Γ— β„‚))
6835toponunii 22739 . . . . . . . . . . . 12 (β„‚ Γ— β„‚) = βˆͺ (𝐾 Γ—t 𝐾)
6968cncnpi 23103 . . . . . . . . . . 11 (( Β· ∈ ((𝐾 Γ—t 𝐾) Cn 𝐾) ∧ βŸ¨π‘¦, 0⟩ ∈ (β„‚ Γ— β„‚)) β†’ Β· ∈ (((𝐾 Γ—t 𝐾) CnP 𝐾)β€˜βŸ¨π‘¦, 0⟩))
7063, 67, 69sylancr 586 . . . . . . . . . 10 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ Β· ∈ (((𝐾 Γ—t 𝐾) CnP 𝐾)β€˜βŸ¨π‘¦, 0⟩))
7138, 43, 33, 33, 3, 36, 44, 62, 70limccnp2 25742 . . . . . . . . 9 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑦 Β· 0) ∈ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)) Β· (𝑧 βˆ’ 𝐡))) limβ„‚ 𝐡))
7264mul01d 11409 . . . . . . . . 9 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑦 Β· 0) = 0)
731adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ 𝐹:π΄βŸΆβ„‚)
74 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ 𝑧 ∈ (𝐴 βˆ– {𝐡}))
7546, 74sselid 3972 . . . . . . . . . . . . . 14 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ 𝑧 ∈ 𝐴)
7673, 75ffvelcdmd 7077 . . . . . . . . . . . . 13 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ (πΉβ€˜π‘§) ∈ β„‚)
7729adantr 480 . . . . . . . . . . . . 13 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ (πΉβ€˜π΅) ∈ β„‚)
7876, 77subcld 11567 . . . . . . . . . . . 12 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) ∈ β„‚)
79 eldifsni 4785 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 βˆ– {𝐡}) β†’ 𝑧 β‰  𝐡)
8079adantl 481 . . . . . . . . . . . . 13 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ 𝑧 β‰  𝐡)
8140, 42, 80subne0d 11576 . . . . . . . . . . . 12 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ (𝑧 βˆ’ 𝐡) β‰  0)
8278, 43, 81divcan1d 11987 . . . . . . . . . . 11 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 βˆ– {𝐡})) β†’ ((((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)) Β· (𝑧 βˆ’ 𝐡)) = ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)))
8382mpteq2dva 5238 . . . . . . . . . 10 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)) Β· (𝑧 βˆ’ 𝐡))) = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))))
8483oveq1d 7416 . . . . . . . . 9 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) / (𝑧 βˆ’ 𝐡)) Β· (𝑧 βˆ’ 𝐡))) limβ„‚ 𝐡) = ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡))
8571, 72, 843eltr3d 2839 . . . . . . . 8 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 0 ∈ ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡))
8631fmpttd 7106 . . . . . . . . . 10 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))):π΄βŸΆβ„‚)
8786limcdif 25726 . . . . . . . . 9 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ ((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡) = (((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) β†Ύ (𝐴 βˆ– {𝐡})) limβ„‚ 𝐡))
88 resmpt 6027 . . . . . . . . . . 11 ((𝐴 βˆ– {𝐡}) βŠ† 𝐴 β†’ ((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) β†Ύ (𝐴 βˆ– {𝐡})) = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))))
8946, 88ax-mp 5 . . . . . . . . . 10 ((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) β†Ύ (𝐴 βˆ– {𝐡})) = (𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)))
9089oveq1i 7411 . . . . . . . . 9 (((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) β†Ύ (𝐴 βˆ– {𝐡})) limβ„‚ 𝐡) = ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡)
9187, 90eqtrdi 2780 . . . . . . . 8 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ ((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡) = ((𝑧 ∈ (𝐴 βˆ– {𝐡}) ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡))
9285, 91eleqtrrd 2828 . . . . . . 7 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 0 ∈ ((𝑧 ∈ 𝐴 ↦ ((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅))) limβ„‚ 𝐡))
93 cncfmptc 24753 . . . . . . . . 9 (((πΉβ€˜π΅) ∈ β„‚ ∧ 𝐴 βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (𝑧 ∈ 𝐴 ↦ (πΉβ€˜π΅)) ∈ (𝐴–cnβ†’β„‚))
9429, 37, 33, 93syl3anc 1368 . . . . . . . 8 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ (πΉβ€˜π΅)) ∈ (𝐴–cnβ†’β„‚))
95 eqidd 2725 . . . . . . . 8 (𝑧 = 𝐡 β†’ (πΉβ€˜π΅) = (πΉβ€˜π΅))
9694, 28, 95cnmptlimc 25740 . . . . . . 7 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (πΉβ€˜π΅) ∈ ((𝑧 ∈ 𝐴 ↦ (πΉβ€˜π΅)) limβ„‚ 𝐡))
973addcn 24702 . . . . . . . 8 + ∈ ((𝐾 Γ—t 𝐾) Cn 𝐾)
98 opelxpi 5703 . . . . . . . . 9 ((0 ∈ β„‚ ∧ (πΉβ€˜π΅) ∈ β„‚) β†’ ⟨0, (πΉβ€˜π΅)⟩ ∈ (β„‚ Γ— β„‚))
9965, 29, 98sylancr 586 . . . . . . . 8 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ ⟨0, (πΉβ€˜π΅)⟩ ∈ (β„‚ Γ— β„‚))
10068cncnpi 23103 . . . . . . . 8 (( + ∈ ((𝐾 Γ—t 𝐾) Cn 𝐾) ∧ ⟨0, (πΉβ€˜π΅)⟩ ∈ (β„‚ Γ— β„‚)) β†’ + ∈ (((𝐾 Γ—t 𝐾) CnP 𝐾)β€˜βŸ¨0, (πΉβ€˜π΅)⟩))
10197, 99, 100sylancr 586 . . . . . . 7 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ + ∈ (((𝐾 Γ—t 𝐾) CnP 𝐾)β€˜βŸ¨0, (πΉβ€˜π΅)⟩))
10231, 30, 33, 33, 3, 36, 92, 96, 101limccnp2 25742 . . . . . 6 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (0 + (πΉβ€˜π΅)) ∈ ((𝑧 ∈ 𝐴 ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) + (πΉβ€˜π΅))) limβ„‚ 𝐡))
10329addlidd 11411 . . . . . 6 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (0 + (πΉβ€˜π΅)) = (πΉβ€˜π΅))
1042, 30npcand 11571 . . . . . . . . 9 ((((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ 𝐴) β†’ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) + (πΉβ€˜π΅)) = (πΉβ€˜π‘§))
105104mpteq2dva 5238 . . . . . . . 8 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) + (πΉβ€˜π΅))) = (𝑧 ∈ 𝐴 ↦ (πΉβ€˜π‘§)))
1061feqmptd 6950 . . . . . . . 8 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐹 = (𝑧 ∈ 𝐴 ↦ (πΉβ€˜π‘§)))
107105, 106eqtr4d 2767 . . . . . . 7 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝑧 ∈ 𝐴 ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) + (πΉβ€˜π΅))) = 𝐹)
108107oveq1d 7416 . . . . . 6 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ ((𝑧 ∈ 𝐴 ↦ (((πΉβ€˜π‘§) βˆ’ (πΉβ€˜π΅)) + (πΉβ€˜π΅))) limβ„‚ 𝐡) = (𝐹 limβ„‚ 𝐡))
109102, 103, 1083eltr3d 2839 . . . . 5 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (πΉβ€˜π΅) ∈ (𝐹 limβ„‚ 𝐡))
110 dvcnp.j . . . . . . 7 𝐽 = (𝐾 β†Ύt 𝐴)
1113, 110cnplimc 25737 . . . . . 6 ((𝐴 βŠ† β„‚ ∧ 𝐡 ∈ 𝐴) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅) ↔ (𝐹:π΄βŸΆβ„‚ ∧ (πΉβ€˜π΅) ∈ (𝐹 limβ„‚ 𝐡))))
11237, 28, 111syl2anc 583 . . . . 5 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅) ↔ (𝐹:π΄βŸΆβ„‚ ∧ (πΉβ€˜π΅) ∈ (𝐹 limβ„‚ 𝐡))))
1131, 109, 112mpbir2and 710 . . . 4 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡(𝑆 D 𝐹)𝑦) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅))
114113ex 412 . . 3 ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ (𝐡(𝑆 D 𝐹)𝑦 β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅)))
115114exlimdv 1928 . 2 ((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) β†’ (βˆƒπ‘¦ 𝐡(𝑆 D 𝐹)𝑦 β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅)))
116 eldmg 5888 . . 3 (𝐡 ∈ dom (𝑆 D 𝐹) β†’ (𝐡 ∈ dom (𝑆 D 𝐹) ↔ βˆƒπ‘¦ 𝐡(𝑆 D 𝐹)𝑦))
117116ibi 267 . 2 (𝐡 ∈ dom (𝑆 D 𝐹) β†’ βˆƒπ‘¦ 𝐡(𝑆 D 𝐹)𝑦)
118115, 117impel 505 1 (((𝑆 βŠ† β„‚ ∧ 𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆) ∧ 𝐡 ∈ dom (𝑆 D 𝐹)) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2932  Vcvv 3466   βˆ– cdif 3937   βŠ† wss 3940  {csn 4620  βŸ¨cop 4626  βˆͺ cuni 4899   class class class wbr 5138   ↦ cmpt 5221   Γ— cxp 5664  dom cdm 5666   β†Ύ cres 5668  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  β„‚cc 11103  0cc0 11105   + caddc 11108   Β· cmul 11110   βˆ’ cmin 11440   / cdiv 11867   β†Ύt crest 17364  TopOpenctopn 17365  β„‚fldccnfld 21227  Topctop 22716  TopOnctopon 22733  intcnt 22842   Cn ccn 23049   CnP ccnp 23050   Γ—t ctx 23385  β€“cnβ†’ccncf 24717   limβ„‚ climc 25712   D cdv 25713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-rest 17366  df-topn 17367  df-0g 17385  df-gsum 17386  df-topgen 17387  df-pt 17388  df-prds 17391  df-xrs 17446  df-qtop 17451  df-imas 17452  df-xps 17454  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703  df-mulg 18985  df-cntz 19222  df-cmn 19691  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-cnfld 21228  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-ntr 22845  df-cn 23052  df-cnp 23053  df-tx 23387  df-hmeo 23580  df-xms 24147  df-ms 24148  df-tms 24149  df-cncf 24719  df-limc 25716  df-dv 25717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator