MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbss Structured version   Visualization version   GIF version

Theorem dvbss 25809
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s (𝜑𝑆 ⊆ ℂ)
dvcl.f (𝜑𝐹:𝐴⟶ℂ)
dvcl.a (𝜑𝐴𝑆)
Assertion
Ref Expression
dvbss (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)

Proof of Theorem dvbss
StepHypRef Expression
1 dvcl.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvcl.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 dvcl.a . . 3 (𝜑𝐴𝑆)
4 eqid 2730 . . 3 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
5 eqid 2730 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
61, 2, 3, 4, 5dvbssntr 25808 . 2 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
75cnfldtop 24678 . . . 4 (TopOpen‘ℂfld) ∈ Top
8 cnex 11156 . . . . 5 ℂ ∈ V
9 ssexg 5281 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
101, 8, 9sylancl 586 . . . 4 (𝜑𝑆 ∈ V)
11 resttop 23054 . . . 4 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
127, 10, 11sylancr 587 . . 3 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
135cnfldtopon 24677 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14 resttopon 23055 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
1513, 1, 14sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
16 toponuni 22808 . . . . 5 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
1715, 16syl 17 . . . 4 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
183, 17sseqtrd 3986 . . 3 (𝜑𝐴 ((TopOpen‘ℂfld) ↾t 𝑆))
19 eqid 2730 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2019ntrss2 22951 . . 3 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝐴 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
2112, 18, 20syl2anc 584 . 2 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
226, 21sstrd 3960 1 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   cuni 4874  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  Topctop 22787  TopOnctopon 22804  intcnt 22911   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774  df-dv 25775
This theorem is referenced by:  dvbsss  25810  dvres3  25821  dvres3a  25822  dvidlem  25823  dvcnp  25827  dvnff  25832  dvnres  25840  cpnord  25844  dvmulbr  25848  dvmulbrOLD  25849  dvaddf  25852  dvmulf  25853  dvcmul  25854  dvcobr  25856  dvcobrOLD  25857  dvcof  25859  dvcjbr  25860  dvrec  25866  dvcnv  25888  dvlipcn  25906  dvlip2  25907  lhop  25928  dvtaylp  26285  ulmdv  26319  pserdv  26346  unbdqndv1  36503  unbdqndv2  36506  knoppndv  36529  fourierdlem80  46191  fourierdlem94  46205  fourierdlem113  46224
  Copyright terms: Public domain W3C validator