| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvbss | Structured version Visualization version GIF version | ||
| Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| dvbss | ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | dvcl.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | dvcl.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | eqid 2733 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 5 | eqid 2733 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 6 | 1, 2, 3, 4, 5 | dvbssntr 25829 | . 2 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴)) |
| 7 | 5 | cnfldtop 24699 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 8 | cnex 11094 | . . . . 5 ⊢ ℂ ∈ V | |
| 9 | ssexg 5263 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V) | |
| 10 | 1, 8, 9 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 11 | resttop 23076 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) | |
| 12 | 7, 10, 11 | sylancr 587 | . . 3 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
| 13 | 5 | cnfldtopon 24698 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 14 | resttopon 23077 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 15 | 13, 1, 14 | sylancr 587 | . . . . 5 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 16 | toponuni 22830 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 = ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 18 | 3, 17 | sseqtrd 3967 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 19 | eqid 2733 | . . . 4 ⊢ ∪ ((TopOpen‘ℂfld) ↾t 𝑆) = ∪ ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 20 | 19 | ntrss2 22973 | . . 3 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝐴 ⊆ ∪ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
| 21 | 12, 18, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
| 22 | 6, 21 | sstrd 3941 | 1 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4858 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ↾t crest 17326 TopOpenctopn 17327 ℂfldccnfld 21293 Topctop 22809 TopOnctopon 22826 intcnt 22933 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-topn 17329 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-ntr 22936 df-cnp 23144 df-xms 24236 df-ms 24237 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: dvbsss 25831 dvres3 25842 dvres3a 25843 dvidlem 25844 dvcnp 25848 dvnff 25853 dvnres 25861 cpnord 25865 dvmulbr 25869 dvmulbrOLD 25870 dvaddf 25873 dvmulf 25874 dvcmul 25875 dvcobr 25877 dvcobrOLD 25878 dvcof 25880 dvcjbr 25881 dvrec 25887 dvcnv 25909 dvlipcn 25927 dvlip2 25928 lhop 25949 dvtaylp 26306 ulmdv 26340 pserdv 26367 unbdqndv1 36573 unbdqndv2 36576 knoppndv 36599 fourierdlem80 46308 fourierdlem94 46322 fourierdlem113 46341 |
| Copyright terms: Public domain | W3C validator |