MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvbss Structured version   Visualization version   GIF version

Theorem dvbss 24065
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s (𝜑𝑆 ⊆ ℂ)
dvcl.f (𝜑𝐹:𝐴⟶ℂ)
dvcl.a (𝜑𝐴𝑆)
Assertion
Ref Expression
dvbss (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)

Proof of Theorem dvbss
StepHypRef Expression
1 dvcl.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvcl.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 dvcl.a . . 3 (𝜑𝐴𝑆)
4 eqid 2826 . . 3 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
5 eqid 2826 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
61, 2, 3, 4, 5dvbssntr 24064 . 2 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴))
75cnfldtop 22958 . . . 4 (TopOpen‘ℂfld) ∈ Top
8 cnex 10334 . . . . 5 ℂ ∈ V
9 ssexg 5030 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
101, 8, 9sylancl 582 . . . 4 (𝜑𝑆 ∈ V)
11 resttop 21336 . . . 4 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
127, 10, 11sylancr 583 . . 3 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
135cnfldtopon 22957 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14 resttopon 21337 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
1513, 1, 14sylancr 583 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
16 toponuni 21090 . . . . 5 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
1715, 16syl 17 . . . 4 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
183, 17sseqtrd 3867 . . 3 (𝜑𝐴 ((TopOpen‘ℂfld) ↾t 𝑆))
19 eqid 2826 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
2019ntrss2 21233 . . 3 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝐴 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
2112, 18, 20syl2anc 581 . 2 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
226, 21sstrd 3838 1 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  Vcvv 3415  wss 3799   cuni 4659  dom cdm 5343  wf 6120  cfv 6124  (class class class)co 6906  cc 10251  t crest 16435  TopOpenctopn 16436  fldccnfld 20107  Topctop 21069  TopOnctopon 21086  intcnt 21193   D cdv 24027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fi 8587  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-fz 12621  df-seq 13097  df-exp 13156  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-plusg 16319  df-mulr 16320  df-starv 16321  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-rest 16437  df-topn 16438  df-topgen 16458  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-cnfld 20108  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-ntr 21196  df-cnp 21404  df-xms 22496  df-ms 22497  df-limc 24030  df-dv 24031
This theorem is referenced by:  dvbsss  24066  dvres3  24077  dvres3a  24078  dvidlem  24079  dvcnp  24082  dvnff  24086  dvnres  24094  cpnord  24098  dvmulbr  24102  dvaddf  24105  dvmulf  24106  dvcmul  24107  dvcobr  24109  dvcof  24111  dvcjbr  24112  dvrec  24118  dvcnv  24140  dvlipcn  24157  dvlip2  24158  lhop  24179  dvtaylp  24524  ulmdv  24557  pserdv  24583  unbdqndv1  33032  unbdqndv2  33035  knoppndv  33058  fourierdlem80  41198  fourierdlem94  41212  fourierdlem113  41231
  Copyright terms: Public domain W3C validator