Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvresntr Structured version   Visualization version   GIF version

Theorem dvresntr 45938
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvresntr.s (𝜑𝑆 ⊆ ℂ)
dvresntr.x (𝜑𝑋𝑆)
dvresntr.f (𝜑𝐹:𝑋⟶ℂ)
dvresntr.j 𝐽 = (𝐾t 𝑆)
dvresntr.k 𝐾 = (TopOpen‘ℂfld)
dvresntr.i (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
Assertion
Ref Expression
dvresntr (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))

Proof of Theorem dvresntr
StepHypRef Expression
1 dvresntr.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvresntr.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvresntr.x . . 3 (𝜑𝑋𝑆)
4 dvresntr.k . . . 4 𝐾 = (TopOpen‘ℂfld)
5 dvresntr.j . . . 4 𝐽 = (𝐾t 𝑆)
64, 5dvres 25947 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑋𝑆)) → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
71, 2, 3, 3, 6syl22anc 838 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
8 ffn 6735 . . . 4 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
9 fnresdm 6686 . . . 4 (𝐹 Fn 𝑋 → (𝐹𝑋) = 𝐹)
102, 8, 93syl 18 . . 3 (𝜑 → (𝐹𝑋) = 𝐹)
1110oveq2d 7448 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = (𝑆 D 𝐹))
124cnfldtopon 24804 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 23170 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 1, 13sylancr 587 . . . . . . . 8 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
155, 14eqeltrid 2844 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑆))
16 topontop 22920 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
18 toponuni 22921 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
1915, 18syl 17 . . . . . . 7 (𝜑𝑆 = 𝐽)
203, 19sseqtrd 4019 . . . . . 6 (𝜑𝑋 𝐽)
21 eqid 2736 . . . . . . 7 𝐽 = 𝐽
2221ntridm 23077 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
2317, 20, 22syl2anc 584 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
24 dvresntr.i . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
2524fveq2d 6909 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌))
2623, 25, 243eqtr3d 2784 . . . 4 (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌)
2726reseq2d 5996 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌))
2821ntrss2 23066 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
2917, 20, 28syl2anc 584 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
3024, 29eqsstrrd 4018 . . . . 5 (𝜑𝑌𝑋)
3130, 3sstrd 3993 . . . 4 (𝜑𝑌𝑆)
324, 5dvres 25947 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑌𝑆)) → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
331, 2, 3, 31, 32syl22anc 838 . . 3 (𝜑 → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
3424reseq2d 5996 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌))
3527, 33, 343eqtr4rd 2787 . 2 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹𝑌)))
367, 11, 353eqtr3d 2784 1 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wss 3950   cuni 4906  cres 5686   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  t crest 17466  TopOpenctopn 17467  fldccnfld 21365  Topctop 22900  TopOnctopon 22917  intcnt 23026   D cdv 25899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-cnp 23237  df-xms 24331  df-ms 24332  df-limc 25902  df-dv 25903
This theorem is referenced by:  fourierdlem73  46199
  Copyright terms: Public domain W3C validator