Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvresntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvresntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvresntr.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvresntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvresntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvresntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvresntr | ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvresntr.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | dvresntr.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | dvresntr.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
4 | dvresntr.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
5 | dvresntr.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
6 | 4, 5 | dvres 25155 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
7 | 1, 2, 3, 3, 6 | syl22anc 836 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
8 | ffn 6637 | . . . 4 ⊢ (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋) | |
9 | fnresdm 6589 | . . . 4 ⊢ (𝐹 Fn 𝑋 → (𝐹 ↾ 𝑋) = 𝐹) | |
10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) = 𝐹) |
11 | 10 | oveq2d 7332 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = (𝑆 D 𝐹)) |
12 | 4 | cnfldtopon 24026 | . . . . . . . . 9 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
13 | resttopon 22392 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
14 | 12, 1, 13 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
15 | 5, 14 | eqeltrid 2841 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
16 | topontop 22142 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
18 | toponuni 22143 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
20 | 3, 19 | sseqtrd 3970 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
21 | eqid 2736 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
22 | 21 | ntridm 22299 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
23 | 17, 20, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
24 | dvresntr.i | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
25 | 24 | fveq2d 6815 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
26 | 23, 25, 24 | 3eqtr3d 2784 | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
27 | 26 | reseq2d 5910 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
28 | 21 | ntrss2 22288 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
29 | 17, 20, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
30 | 24, 29 | eqsstrrd 3969 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
31 | 30, 3 | sstrd 3940 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
32 | 4, 5 | dvres 25155 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
33 | 1, 2, 3, 31, 32 | syl22anc 836 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
34 | 24 | reseq2d 5910 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
35 | 27, 33, 34 | 3eqtr4rd 2787 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹 ↾ 𝑌))) |
36 | 7, 11, 35 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ∪ cuni 4849 ↾ cres 5609 Fn wfn 6460 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ℂcc 10948 ↾t crest 17205 TopOpenctopn 17206 ℂfldccnfld 20677 Topctop 22122 TopOnctopon 22139 intcnt 22248 D cdv 25107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fi 9246 df-sup 9277 df-inf 9278 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-q 12768 df-rp 12810 df-xneg 12927 df-xadd 12928 df-xmul 12929 df-fz 13319 df-seq 13801 df-exp 13862 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-struct 16922 df-slot 16957 df-ndx 16969 df-base 16987 df-plusg 17049 df-mulr 17050 df-starv 17051 df-tset 17055 df-ple 17056 df-ds 17058 df-unif 17059 df-rest 17207 df-topn 17208 df-topgen 17228 df-psmet 20669 df-xmet 20670 df-met 20671 df-bl 20672 df-mopn 20673 df-cnfld 20678 df-top 22123 df-topon 22140 df-topsp 22162 df-bases 22176 df-cld 22250 df-ntr 22251 df-cls 22252 df-cnp 22459 df-xms 23553 df-ms 23554 df-limc 25110 df-dv 25111 |
This theorem is referenced by: fourierdlem73 43975 |
Copyright terms: Public domain | W3C validator |