Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvresntr Structured version   Visualization version   GIF version

Theorem dvresntr 41060
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvresntr.s (𝜑𝑆 ⊆ ℂ)
dvresntr.x (𝜑𝑋𝑆)
dvresntr.f (𝜑𝐹:𝑋⟶ℂ)
dvresntr.j 𝐽 = (𝐾t 𝑆)
dvresntr.k 𝐾 = (TopOpen‘ℂfld)
dvresntr.i (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
Assertion
Ref Expression
dvresntr (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))

Proof of Theorem dvresntr
StepHypRef Expression
1 dvresntr.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvresntr.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvresntr.x . . 3 (𝜑𝑋𝑆)
4 dvresntr.k . . . 4 𝐾 = (TopOpen‘ℂfld)
5 dvresntr.j . . . 4 𝐽 = (𝐾t 𝑆)
64, 5dvres 24112 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑋𝑆)) → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
71, 2, 3, 3, 6syl22anc 829 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
8 ffn 6291 . . . 4 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
9 fnresdm 6246 . . . 4 (𝐹 Fn 𝑋 → (𝐹𝑋) = 𝐹)
102, 8, 93syl 18 . . 3 (𝜑 → (𝐹𝑋) = 𝐹)
1110oveq2d 6938 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = (𝑆 D 𝐹))
124cnfldtopon 22994 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 21373 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 1, 13sylancr 581 . . . . . . . 8 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
155, 14syl5eqel 2863 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑆))
16 topontop 21125 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
18 toponuni 21126 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
1915, 18syl 17 . . . . . . 7 (𝜑𝑆 = 𝐽)
203, 19sseqtrd 3860 . . . . . 6 (𝜑𝑋 𝐽)
21 eqid 2778 . . . . . . 7 𝐽 = 𝐽
2221ntridm 21280 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
2317, 20, 22syl2anc 579 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
24 dvresntr.i . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
2524fveq2d 6450 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌))
2623, 25, 243eqtr3d 2822 . . . 4 (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌)
2726reseq2d 5642 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌))
2821ntrss2 21269 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
2917, 20, 28syl2anc 579 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
3024, 29eqsstr3d 3859 . . . . 5 (𝜑𝑌𝑋)
3130, 3sstrd 3831 . . . 4 (𝜑𝑌𝑆)
324, 5dvres 24112 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑌𝑆)) → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
331, 2, 3, 31, 32syl22anc 829 . . 3 (𝜑 → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
3424reseq2d 5642 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌))
3527, 33, 343eqtr4rd 2825 . 2 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹𝑌)))
367, 11, 353eqtr3d 2822 1 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  wss 3792   cuni 4671  cres 5357   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  t crest 16467  TopOpenctopn 16468  fldccnfld 20142  Topctop 21105  TopOnctopon 21122  intcnt 21229   D cdv 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-rest 16469  df-topn 16470  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-cnp 21440  df-xms 22533  df-ms 22534  df-limc 24067  df-dv 24068
This theorem is referenced by:  fourierdlem73  41323
  Copyright terms: Public domain W3C validator