| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresntr | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvresntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvresntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvresntr.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvresntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvresntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvresntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvresntr | ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvresntr.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | dvresntr.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | dvresntr.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 4 | dvresntr.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 5 | dvresntr.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 6 | 4, 5 | dvres 25810 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
| 7 | 1, 2, 3, 3, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
| 8 | ffn 6652 | . . . 4 ⊢ (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋) | |
| 9 | fnresdm 6601 | . . . 4 ⊢ (𝐹 Fn 𝑋 → (𝐹 ↾ 𝑋) = 𝐹) | |
| 10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) = 𝐹) |
| 11 | 10 | oveq2d 7365 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = (𝑆 D 𝐹)) |
| 12 | 4 | cnfldtopon 24668 | . . . . . . . . 9 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 13 | resttopon 23046 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 14 | 12, 1, 13 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 15 | 5, 14 | eqeltrid 2832 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
| 16 | topontop 22798 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 18 | toponuni 22799 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
| 19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
| 20 | 3, 19 | sseqtrd 3972 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
| 21 | eqid 2729 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 22 | 21 | ntridm 22953 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 23 | 17, 20, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 24 | dvresntr.i | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
| 25 | 24 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
| 26 | 23, 25, 24 | 3eqtr3d 2772 | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
| 27 | 26 | reseq2d 5930 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
| 28 | 21 | ntrss2 22942 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 29 | 17, 20, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 30 | 24, 29 | eqsstrrd 3971 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 31 | 30, 3 | sstrd 3946 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
| 32 | 4, 5 | dvres 25810 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
| 33 | 1, 2, 3, 31, 32 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
| 34 | 24 | reseq2d 5930 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
| 35 | 27, 33, 34 | 3eqtr4rd 2775 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹 ↾ 𝑌))) |
| 36 | 7, 11, 35 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 ↾ cres 5621 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21261 Topctop 22778 TopOnctopon 22795 intcnt 22902 D cdv 25762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-cnp 23113 df-xms 24206 df-ms 24207 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: fourierdlem73 46160 |
| Copyright terms: Public domain | W3C validator |