![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvresntr.s | β’ (π β π β β) |
dvresntr.x | β’ (π β π β π) |
dvresntr.f | β’ (π β πΉ:πβΆβ) |
dvresntr.j | β’ π½ = (πΎ βΎt π) |
dvresntr.k | β’ πΎ = (TopOpenββfld) |
dvresntr.i | β’ (π β ((intβπ½)βπ) = π) |
Ref | Expression |
---|---|
dvresntr | β’ (π β (π D πΉ) = (π D (πΉ βΎ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvresntr.s | . . 3 β’ (π β π β β) | |
2 | dvresntr.f | . . 3 β’ (π β πΉ:πβΆβ) | |
3 | dvresntr.x | . . 3 β’ (π β π β π) | |
4 | dvresntr.k | . . . 4 β’ πΎ = (TopOpenββfld) | |
5 | dvresntr.j | . . . 4 β’ π½ = (πΎ βΎt π) | |
6 | 4, 5 | dvres 25790 | . . 3 β’ (((π β β β§ πΉ:πβΆβ) β§ (π β π β§ π β π)) β (π D (πΉ βΎ π)) = ((π D πΉ) βΎ ((intβπ½)βπ))) |
7 | 1, 2, 3, 3, 6 | syl22anc 836 | . 2 β’ (π β (π D (πΉ βΎ π)) = ((π D πΉ) βΎ ((intβπ½)βπ))) |
8 | ffn 6710 | . . . 4 β’ (πΉ:πβΆβ β πΉ Fn π) | |
9 | fnresdm 6662 | . . . 4 β’ (πΉ Fn π β (πΉ βΎ π) = πΉ) | |
10 | 2, 8, 9 | 3syl 18 | . . 3 β’ (π β (πΉ βΎ π) = πΉ) |
11 | 10 | oveq2d 7420 | . 2 β’ (π β (π D (πΉ βΎ π)) = (π D πΉ)) |
12 | 4 | cnfldtopon 24649 | . . . . . . . . 9 β’ πΎ β (TopOnββ) |
13 | resttopon 23015 | . . . . . . . . 9 β’ ((πΎ β (TopOnββ) β§ π β β) β (πΎ βΎt π) β (TopOnβπ)) | |
14 | 12, 1, 13 | sylancr 586 | . . . . . . . 8 β’ (π β (πΎ βΎt π) β (TopOnβπ)) |
15 | 5, 14 | eqeltrid 2831 | . . . . . . 7 β’ (π β π½ β (TopOnβπ)) |
16 | topontop 22765 | . . . . . . 7 β’ (π½ β (TopOnβπ) β π½ β Top) | |
17 | 15, 16 | syl 17 | . . . . . 6 β’ (π β π½ β Top) |
18 | toponuni 22766 | . . . . . . . 8 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
19 | 15, 18 | syl 17 | . . . . . . 7 β’ (π β π = βͺ π½) |
20 | 3, 19 | sseqtrd 4017 | . . . . . 6 β’ (π β π β βͺ π½) |
21 | eqid 2726 | . . . . . . 7 β’ βͺ π½ = βͺ π½ | |
22 | 21 | ntridm 22922 | . . . . . 6 β’ ((π½ β Top β§ π β βͺ π½) β ((intβπ½)β((intβπ½)βπ)) = ((intβπ½)βπ)) |
23 | 17, 20, 22 | syl2anc 583 | . . . . 5 β’ (π β ((intβπ½)β((intβπ½)βπ)) = ((intβπ½)βπ)) |
24 | dvresntr.i | . . . . . 6 β’ (π β ((intβπ½)βπ) = π) | |
25 | 24 | fveq2d 6888 | . . . . 5 β’ (π β ((intβπ½)β((intβπ½)βπ)) = ((intβπ½)βπ)) |
26 | 23, 25, 24 | 3eqtr3d 2774 | . . . 4 β’ (π β ((intβπ½)βπ) = π) |
27 | 26 | reseq2d 5974 | . . 3 β’ (π β ((π D πΉ) βΎ ((intβπ½)βπ)) = ((π D πΉ) βΎ π)) |
28 | 21 | ntrss2 22911 | . . . . . . 7 β’ ((π½ β Top β§ π β βͺ π½) β ((intβπ½)βπ) β π) |
29 | 17, 20, 28 | syl2anc 583 | . . . . . 6 β’ (π β ((intβπ½)βπ) β π) |
30 | 24, 29 | eqsstrrd 4016 | . . . . 5 β’ (π β π β π) |
31 | 30, 3 | sstrd 3987 | . . . 4 β’ (π β π β π) |
32 | 4, 5 | dvres 25790 | . . . 4 β’ (((π β β β§ πΉ:πβΆβ) β§ (π β π β§ π β π)) β (π D (πΉ βΎ π)) = ((π D πΉ) βΎ ((intβπ½)βπ))) |
33 | 1, 2, 3, 31, 32 | syl22anc 836 | . . 3 β’ (π β (π D (πΉ βΎ π)) = ((π D πΉ) βΎ ((intβπ½)βπ))) |
34 | 24 | reseq2d 5974 | . . 3 β’ (π β ((π D πΉ) βΎ ((intβπ½)βπ)) = ((π D πΉ) βΎ π)) |
35 | 27, 33, 34 | 3eqtr4rd 2777 | . 2 β’ (π β ((π D πΉ) βΎ ((intβπ½)βπ)) = (π D (πΉ βΎ π))) |
36 | 7, 11, 35 | 3eqtr3d 2774 | 1 β’ (π β (π D πΉ) = (π D (πΉ βΎ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3943 βͺ cuni 4902 βΎ cres 5671 Fn wfn 6531 βΆwf 6532 βcfv 6536 (class class class)co 7404 βcc 11107 βΎt crest 17372 TopOpenctopn 17373 βfldccnfld 21235 Topctop 22745 TopOnctopon 22762 intcnt 22871 D cdv 25742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-fz 13488 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-struct 17086 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-rest 17374 df-topn 17375 df-topgen 17395 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-cnfld 21236 df-top 22746 df-topon 22763 df-topsp 22785 df-bases 22799 df-cld 22873 df-ntr 22874 df-cls 22875 df-cnp 23082 df-xms 24176 df-ms 24177 df-limc 25745 df-dv 25746 |
This theorem is referenced by: fourierdlem73 45449 |
Copyright terms: Public domain | W3C validator |