![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvresntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvresntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvresntr.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvresntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvresntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvresntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvresntr | ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvresntr.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | dvresntr.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | dvresntr.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
4 | dvresntr.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
5 | dvresntr.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
6 | 4, 5 | dvres 24112 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
7 | 1, 2, 3, 3, 6 | syl22anc 829 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
8 | ffn 6291 | . . . 4 ⊢ (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋) | |
9 | fnresdm 6246 | . . . 4 ⊢ (𝐹 Fn 𝑋 → (𝐹 ↾ 𝑋) = 𝐹) | |
10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) = 𝐹) |
11 | 10 | oveq2d 6938 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = (𝑆 D 𝐹)) |
12 | 4 | cnfldtopon 22994 | . . . . . . . . 9 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
13 | resttopon 21373 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
14 | 12, 1, 13 | sylancr 581 | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
15 | 5, 14 | syl5eqel 2863 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
16 | topontop 21125 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
18 | toponuni 21126 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
20 | 3, 19 | sseqtrd 3860 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
21 | eqid 2778 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
22 | 21 | ntridm 21280 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
23 | 17, 20, 22 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
24 | dvresntr.i | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
25 | 24 | fveq2d 6450 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
26 | 23, 25, 24 | 3eqtr3d 2822 | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
27 | 26 | reseq2d 5642 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
28 | 21 | ntrss2 21269 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
29 | 17, 20, 28 | syl2anc 579 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
30 | 24, 29 | eqsstr3d 3859 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
31 | 30, 3 | sstrd 3831 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
32 | 4, 5 | dvres 24112 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
33 | 1, 2, 3, 31, 32 | syl22anc 829 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
34 | 24 | reseq2d 5642 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
35 | 27, 33, 34 | 3eqtr4rd 2825 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹 ↾ 𝑌))) |
36 | 7, 11, 35 | 3eqtr3d 2822 | 1 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∪ cuni 4671 ↾ cres 5357 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ↾t crest 16467 TopOpenctopn 16468 ℂfldccnfld 20142 Topctop 21105 TopOnctopon 21122 intcnt 21229 D cdv 24064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fi 8605 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-fz 12644 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-plusg 16351 df-mulr 16352 df-starv 16353 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-rest 16469 df-topn 16470 df-topgen 16490 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-cnp 21440 df-xms 22533 df-ms 22534 df-limc 24067 df-dv 24068 |
This theorem is referenced by: fourierdlem73 41323 |
Copyright terms: Public domain | W3C validator |