Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvresntr Structured version   Visualization version   GIF version

Theorem dvresntr 43077
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvresntr.s (𝜑𝑆 ⊆ ℂ)
dvresntr.x (𝜑𝑋𝑆)
dvresntr.f (𝜑𝐹:𝑋⟶ℂ)
dvresntr.j 𝐽 = (𝐾t 𝑆)
dvresntr.k 𝐾 = (TopOpen‘ℂfld)
dvresntr.i (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
Assertion
Ref Expression
dvresntr (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))

Proof of Theorem dvresntr
StepHypRef Expression
1 dvresntr.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvresntr.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvresntr.x . . 3 (𝜑𝑋𝑆)
4 dvresntr.k . . . 4 𝐾 = (TopOpen‘ℂfld)
5 dvresntr.j . . . 4 𝐽 = (𝐾t 𝑆)
64, 5dvres 24762 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑋𝑆)) → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
71, 2, 3, 3, 6syl22anc 839 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
8 ffn 6523 . . . 4 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
9 fnresdm 6474 . . . 4 (𝐹 Fn 𝑋 → (𝐹𝑋) = 𝐹)
102, 8, 93syl 18 . . 3 (𝜑 → (𝐹𝑋) = 𝐹)
1110oveq2d 7207 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = (𝑆 D 𝐹))
124cnfldtopon 23634 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 22012 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 1, 13sylancr 590 . . . . . . . 8 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
155, 14eqeltrid 2835 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑆))
16 topontop 21764 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
18 toponuni 21765 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
1915, 18syl 17 . . . . . . 7 (𝜑𝑆 = 𝐽)
203, 19sseqtrd 3927 . . . . . 6 (𝜑𝑋 𝐽)
21 eqid 2736 . . . . . . 7 𝐽 = 𝐽
2221ntridm 21919 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
2317, 20, 22syl2anc 587 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
24 dvresntr.i . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
2524fveq2d 6699 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌))
2623, 25, 243eqtr3d 2779 . . . 4 (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌)
2726reseq2d 5836 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌))
2821ntrss2 21908 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
2917, 20, 28syl2anc 587 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
3024, 29eqsstrrd 3926 . . . . 5 (𝜑𝑌𝑋)
3130, 3sstrd 3897 . . . 4 (𝜑𝑌𝑆)
324, 5dvres 24762 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑌𝑆)) → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
331, 2, 3, 31, 32syl22anc 839 . . 3 (𝜑 → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
3424reseq2d 5836 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌))
3527, 33, 343eqtr4rd 2782 . 2 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹𝑌)))
367, 11, 353eqtr3d 2779 1 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wss 3853   cuni 4805  cres 5538   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  t crest 16879  TopOpenctopn 16880  fldccnfld 20317  Topctop 21744  TopOnctopon 21761  intcnt 21868   D cdv 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-starv 16764  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-rest 16881  df-topn 16882  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-cnp 22079  df-xms 23172  df-ms 23173  df-limc 24717  df-dv 24718
This theorem is referenced by:  fourierdlem73  43338
  Copyright terms: Public domain W3C validator