Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvresntr Structured version   Visualization version   GIF version

Theorem dvresntr 45914
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvresntr.s (𝜑𝑆 ⊆ ℂ)
dvresntr.x (𝜑𝑋𝑆)
dvresntr.f (𝜑𝐹:𝑋⟶ℂ)
dvresntr.j 𝐽 = (𝐾t 𝑆)
dvresntr.k 𝐾 = (TopOpen‘ℂfld)
dvresntr.i (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
Assertion
Ref Expression
dvresntr (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))

Proof of Theorem dvresntr
StepHypRef Expression
1 dvresntr.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvresntr.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvresntr.x . . 3 (𝜑𝑋𝑆)
4 dvresntr.k . . . 4 𝐾 = (TopOpen‘ℂfld)
5 dvresntr.j . . . 4 𝐽 = (𝐾t 𝑆)
64, 5dvres 25869 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑋𝑆)) → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
71, 2, 3, 3, 6syl22anc 838 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
8 ffn 6711 . . . 4 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
9 fnresdm 6662 . . . 4 (𝐹 Fn 𝑋 → (𝐹𝑋) = 𝐹)
102, 8, 93syl 18 . . 3 (𝜑 → (𝐹𝑋) = 𝐹)
1110oveq2d 7426 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = (𝑆 D 𝐹))
124cnfldtopon 24726 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 23104 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 1, 13sylancr 587 . . . . . . . 8 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
155, 14eqeltrid 2839 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑆))
16 topontop 22856 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
18 toponuni 22857 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
1915, 18syl 17 . . . . . . 7 (𝜑𝑆 = 𝐽)
203, 19sseqtrd 4000 . . . . . 6 (𝜑𝑋 𝐽)
21 eqid 2736 . . . . . . 7 𝐽 = 𝐽
2221ntridm 23011 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
2317, 20, 22syl2anc 584 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
24 dvresntr.i . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
2524fveq2d 6885 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌))
2623, 25, 243eqtr3d 2779 . . . 4 (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌)
2726reseq2d 5971 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌))
2821ntrss2 23000 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
2917, 20, 28syl2anc 584 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
3024, 29eqsstrrd 3999 . . . . 5 (𝜑𝑌𝑋)
3130, 3sstrd 3974 . . . 4 (𝜑𝑌𝑆)
324, 5dvres 25869 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑌𝑆)) → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
331, 2, 3, 31, 32syl22anc 838 . . 3 (𝜑 → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
3424reseq2d 5971 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌))
3527, 33, 343eqtr4rd 2782 . 2 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹𝑌)))
367, 11, 353eqtr3d 2779 1 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3931   cuni 4888  cres 5661   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  t crest 17439  TopOpenctopn 17440  fldccnfld 21320  Topctop 22836  TopOnctopon 22853  intcnt 22960   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-cnp 23171  df-xms 24264  df-ms 24265  df-limc 25824  df-dv 25825
This theorem is referenced by:  fourierdlem73  46175
  Copyright terms: Public domain W3C validator