| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvresntr | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvresntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvresntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvresntr.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvresntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvresntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvresntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvresntr | ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvresntr.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | dvresntr.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | dvresntr.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 4 | dvresntr.k | . . . 4 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 5 | dvresntr.j | . . . 4 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 6 | 4, 5 | dvres 25869 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
| 7 | 1, 2, 3, 3, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋))) |
| 8 | ffn 6711 | . . . 4 ⊢ (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋) | |
| 9 | fnresdm 6662 | . . . 4 ⊢ (𝐹 Fn 𝑋 → (𝐹 ↾ 𝑋) = 𝐹) | |
| 10 | 2, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑋) = 𝐹) |
| 11 | 10 | oveq2d 7426 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑋)) = (𝑆 D 𝐹)) |
| 12 | 4 | cnfldtopon 24726 | . . . . . . . . 9 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 13 | resttopon 23104 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 14 | 12, 1, 13 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 15 | 5, 14 | eqeltrid 2839 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
| 16 | topontop 22856 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 18 | toponuni 22857 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
| 19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
| 20 | 3, 19 | sseqtrd 4000 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
| 21 | eqid 2736 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 22 | 21 | ntridm 23011 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 23 | 17, 20, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 24 | dvresntr.i | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
| 25 | 24 | fveq2d 6885 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
| 26 | 23, 25, 24 | 3eqtr3d 2779 | . . . 4 ⊢ (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌) |
| 27 | 26 | reseq2d 5971 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
| 28 | 21 | ntrss2 23000 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 29 | 17, 20, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 30 | 24, 29 | eqsstrrd 3999 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 31 | 30, 3 | sstrd 3974 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
| 32 | 4, 5 | dvres 25869 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
| 33 | 1, 2, 3, 31, 32 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ↾ 𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌))) |
| 34 | 24 | reseq2d 5971 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌)) |
| 35 | 27, 33, 34 | 3eqtr4rd 2782 | . 2 ⊢ (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹 ↾ 𝑌))) |
| 36 | 7, 11, 35 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹 ↾ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 ↾ cres 5661 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ↾t crest 17439 TopOpenctopn 17440 ℂfldccnfld 21320 Topctop 22836 TopOnctopon 22853 intcnt 22960 D cdv 25821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-rest 17441 df-topn 17442 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-cnp 23171 df-xms 24264 df-ms 24265 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: fourierdlem73 46175 |
| Copyright terms: Public domain | W3C validator |