Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvresntr Structured version   Visualization version   GIF version

Theorem dvresntr 42209
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvresntr.s (𝜑𝑆 ⊆ ℂ)
dvresntr.x (𝜑𝑋𝑆)
dvresntr.f (𝜑𝐹:𝑋⟶ℂ)
dvresntr.j 𝐽 = (𝐾t 𝑆)
dvresntr.k 𝐾 = (TopOpen‘ℂfld)
dvresntr.i (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
Assertion
Ref Expression
dvresntr (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))

Proof of Theorem dvresntr
StepHypRef Expression
1 dvresntr.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvresntr.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvresntr.x . . 3 (𝜑𝑋𝑆)
4 dvresntr.k . . . 4 𝐾 = (TopOpen‘ℂfld)
5 dvresntr.j . . . 4 𝐽 = (𝐾t 𝑆)
64, 5dvres 24511 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑋𝑆)) → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
71, 2, 3, 3, 6syl22anc 836 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)))
8 ffn 6516 . . . 4 (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋)
9 fnresdm 6468 . . . 4 (𝐹 Fn 𝑋 → (𝐹𝑋) = 𝐹)
102, 8, 93syl 18 . . 3 (𝜑 → (𝐹𝑋) = 𝐹)
1110oveq2d 7174 . 2 (𝜑 → (𝑆 D (𝐹𝑋)) = (𝑆 D 𝐹))
124cnfldtopon 23393 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 21771 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 1, 13sylancr 589 . . . . . . . 8 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
155, 14eqeltrid 2919 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑆))
16 topontop 21523 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
18 toponuni 21524 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
1915, 18syl 17 . . . . . . 7 (𝜑𝑆 = 𝐽)
203, 19sseqtrd 4009 . . . . . 6 (𝜑𝑋 𝐽)
21 eqid 2823 . . . . . . 7 𝐽 = 𝐽
2221ntridm 21678 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
2317, 20, 22syl2anc 586 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
24 dvresntr.i . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
2524fveq2d 6676 . . . . 5 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌))
2623, 25, 243eqtr3d 2866 . . . 4 (𝜑 → ((int‘𝐽)‘𝑌) = 𝑌)
2726reseq2d 5855 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)) = ((𝑆 D 𝐹) ↾ 𝑌))
2821ntrss2 21667 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
2917, 20, 28syl2anc 586 . . . . . 6 (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
3024, 29eqsstrrd 4008 . . . . 5 (𝜑𝑌𝑋)
3130, 3sstrd 3979 . . . 4 (𝜑𝑌𝑆)
324, 5dvres 24511 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋𝑆𝑌𝑆)) → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
331, 2, 3, 31, 32syl22anc 836 . . 3 (𝜑 → (𝑆 D (𝐹𝑌)) = ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑌)))
3424reseq2d 5855 . . 3 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D 𝐹) ↾ 𝑌))
3527, 33, 343eqtr4rd 2869 . 2 (𝜑 → ((𝑆 D 𝐹) ↾ ((int‘𝐽)‘𝑋)) = (𝑆 D (𝐹𝑌)))
367, 11, 353eqtr3d 2866 1 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3938   cuni 4840  cres 5559   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  t crest 16696  TopOpenctopn 16697  fldccnfld 20547  Topctop 21503  TopOnctopon 21520  intcnt 21627   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-cnp 21838  df-xms 22932  df-ms 22933  df-limc 24466  df-dv 24467
This theorem is referenced by:  fourierdlem73  42471
  Copyright terms: Public domain W3C validator