![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvmptntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvmptntr.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvmptntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvmptntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvmptntr | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptntr.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
2 | dvmptntr.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 24743 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | dvmptntr.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
5 | resttopon 23109 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
6 | 3, 4, 5 | sylancr 585 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
7 | 1, 6 | eqeltrid 2829 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
8 | topontop 22859 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
10 | dvmptntr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
11 | toponuni 22860 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
13 | 10, 12 | sseqtrd 4017 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
14 | eqid 2725 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
15 | 14 | ntridm 23016 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
16 | 9, 13, 15 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
17 | dvmptntr.i | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
18 | 17 | fveq2d 6900 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
19 | 16, 18 | eqtr3d 2767 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = ((int‘𝐽)‘𝑌)) |
20 | 19 | reseq2d 5985 | . . . 4 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
21 | dvmptntr.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
22 | 21 | fmpttd 7124 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
23 | 2, 1 | dvres 25884 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
24 | 4, 22, 10, 10, 23 | syl22anc 837 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
25 | 14 | ntrss2 23005 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
26 | 9, 13, 25 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
27 | 17, 26 | eqsstrrd 4016 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
28 | 27, 10 | sstrd 3987 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
29 | 2, 1 | dvres 25884 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
30 | 4, 22, 10, 28, 29 | syl22anc 837 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
31 | 20, 24, 30 | 3eqtr4d 2775 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌))) |
32 | ssid 3999 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
33 | resmpt 6042 | . . . . 5 ⊢ (𝑋 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
34 | 32, 33 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
35 | 34 | oveq2d 7435 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
36 | 31, 35 | eqtr3d 2767 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
37 | 27 | resmptd 6045 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
38 | 37 | oveq2d 7435 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
39 | 36, 38 | eqtr3d 2767 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ∪ cuni 4909 ↦ cmpt 5232 ↾ cres 5680 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ↾t crest 17405 TopOpenctopn 17406 ℂfldccnfld 21296 Topctop 22839 TopOnctopon 22856 intcnt 22965 D cdv 25836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-fz 13520 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-rest 17407 df-topn 17408 df-topgen 17428 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-cnp 23176 df-xms 24270 df-ms 24271 df-limc 25839 df-dv 25840 |
This theorem is referenced by: rolle 25966 cmvth 25967 cmvthOLD 25968 dvlip 25970 dvlipcn 25971 dvle 25984 dvfsumabs 26001 ftc2 26023 itgparts 26026 itgsubstlem 26027 lgamgulmlem2 27007 ftc2nc 37303 areacirc 37314 itgsin0pilem1 45473 itgsbtaddcnst 45505 |
Copyright terms: Public domain | W3C validator |