MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptntr Structured version   Visualization version   GIF version

Theorem dvmptntr 25146
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptntr.s (𝜑𝑆 ⊆ ℂ)
dvmptntr.x (𝜑𝑋𝑆)
dvmptntr.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptntr.j 𝐽 = (𝐾t 𝑆)
dvmptntr.k 𝐾 = (TopOpen‘ℂfld)
dvmptntr.i (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
Assertion
Ref Expression
dvmptntr (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑌𝐴)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem dvmptntr
StepHypRef Expression
1 dvmptntr.j . . . . . . . . 9 𝐽 = (𝐾t 𝑆)
2 dvmptntr.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23957 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
4 dvmptntr.s . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
5 resttopon 22323 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
63, 4, 5sylancr 587 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
71, 6eqeltrid 2845 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
8 topontop 22073 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top)
97, 8syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
10 dvmptntr.x . . . . . . . 8 (𝜑𝑋𝑆)
11 toponuni 22074 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = 𝐽)
127, 11syl 17 . . . . . . . 8 (𝜑𝑆 = 𝐽)
1310, 12sseqtrd 3966 . . . . . . 7 (𝜑𝑋 𝐽)
14 eqid 2740 . . . . . . . 8 𝐽 = 𝐽
1514ntridm 22230 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
169, 13, 15syl2anc 584 . . . . . 6 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋))
17 dvmptntr.i . . . . . . 7 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌)
1817fveq2d 6775 . . . . . 6 (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌))
1916, 18eqtr3d 2782 . . . . 5 (𝜑 → ((int‘𝐽)‘𝑋) = ((int‘𝐽)‘𝑌))
2019reseq2d 5890 . . . 4 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑌)))
21 dvmptntr.a . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2221fmpttd 6986 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
232, 1dvres 25086 . . . . 5 (((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝑆𝑋𝑆)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑋)))
244, 22, 10, 10, 23syl22anc 836 . . . 4 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑋)))
2514ntrss2 22219 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
269, 13, 25syl2anc 584 . . . . . . 7 (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋)
2717, 26eqsstrrd 3965 . . . . . 6 (𝜑𝑌𝑋)
2827, 10sstrd 3936 . . . . 5 (𝜑𝑌𝑆)
292, 1dvres 25086 . . . . 5 (((𝑆 ⊆ ℂ ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝑆𝑌𝑆)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑌)))
304, 22, 10, 28, 29syl22anc 836 . . . 4 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥𝑋𝐴)) ↾ ((int‘𝐽)‘𝑌)))
3120, 24, 303eqtr4d 2790 . . 3 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑋)) = (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑌)))
32 ssid 3948 . . . . 5 𝑋𝑋
33 resmpt 5944 . . . . 5 (𝑋𝑋 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
3432, 33mp1i 13 . . . 4 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
3534oveq2d 7288 . . 3 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑋)) = (𝑆 D (𝑥𝑋𝐴)))
3631, 35eqtr3d 2782 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑌)) = (𝑆 D (𝑥𝑋𝐴)))
3727resmptd 5947 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
3837oveq2d 7288 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑌)) = (𝑆 D (𝑥𝑌𝐴)))
3936, 38eqtr3d 2782 1 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wss 3892   cuni 4845  cmpt 5162  cres 5592  wf 6428  cfv 6432  (class class class)co 7272  cc 10880  t crest 17142  TopOpenctopn 17143  fldccnfld 20608  Topctop 22053  TopOnctopon 22070  intcnt 22179   D cdv 25038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-pm 8610  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fi 9158  df-sup 9189  df-inf 9190  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-fz 13251  df-seq 13733  df-exp 13794  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-struct 16859  df-slot 16894  df-ndx 16906  df-base 16924  df-plusg 16986  df-mulr 16987  df-starv 16988  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-rest 17144  df-topn 17145  df-topgen 17165  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-cnp 22390  df-xms 23484  df-ms 23485  df-limc 25041  df-dv 25042
This theorem is referenced by:  rolle  25165  cmvth  25166  dvlip  25168  dvlipcn  25169  dvle  25182  dvfsumabs  25198  ftc2  25219  itgparts  25222  itgsubstlem  25223  lgamgulmlem2  26190  ftc2nc  35868  areacirc  35879  itgsin0pilem1  43473  itgsbtaddcnst  43505
  Copyright terms: Public domain W3C validator