![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvmptntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvmptntr.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvmptntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvmptntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvmptntr | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptntr.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
2 | dvmptntr.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 24824 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | dvmptntr.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
5 | resttopon 23190 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
6 | 3, 4, 5 | sylancr 586 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
7 | 1, 6 | eqeltrid 2848 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
8 | topontop 22940 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
10 | dvmptntr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
11 | toponuni 22941 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
13 | 10, 12 | sseqtrd 4049 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
14 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
15 | 14 | ntridm 23097 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
16 | 9, 13, 15 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
17 | dvmptntr.i | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
18 | 17 | fveq2d 6924 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
19 | 16, 18 | eqtr3d 2782 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = ((int‘𝐽)‘𝑌)) |
20 | 19 | reseq2d 6009 | . . . 4 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
21 | dvmptntr.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
22 | 21 | fmpttd 7149 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
23 | 2, 1 | dvres 25966 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
24 | 4, 22, 10, 10, 23 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
25 | 14 | ntrss2 23086 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
26 | 9, 13, 25 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
27 | 17, 26 | eqsstrrd 4048 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
28 | 27, 10 | sstrd 4019 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
29 | 2, 1 | dvres 25966 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
30 | 4, 22, 10, 28, 29 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
31 | 20, 24, 30 | 3eqtr4d 2790 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌))) |
32 | ssid 4031 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
33 | resmpt 6066 | . . . . 5 ⊢ (𝑋 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
34 | 32, 33 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
35 | 34 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
36 | 31, 35 | eqtr3d 2782 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
37 | 27 | resmptd 6069 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
38 | 37 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
39 | 36, 38 | eqtr3d 2782 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ↦ cmpt 5249 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 Topctop 22920 TopOnctopon 22937 intcnt 23046 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-cnp 23257 df-xms 24351 df-ms 24352 df-limc 25921 df-dv 25922 |
This theorem is referenced by: rolle 26048 cmvth 26049 cmvthOLD 26050 dvlip 26052 dvlipcn 26053 dvle 26066 dvfsumabs 26083 ftc2 26105 itgparts 26108 itgsubstlem 26109 lgamgulmlem2 27091 ftc2nc 37662 areacirc 37673 itgsin0pilem1 45871 itgsbtaddcnst 45903 |
Copyright terms: Public domain | W3C validator |