| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptntr | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvmptntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvmptntr.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvmptntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvmptntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvmptntr | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptntr.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 2 | dvmptntr.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 3 | 2 | cnfldtopon 24686 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 4 | dvmptntr.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 5 | resttopon 23064 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 7 | 1, 6 | eqeltrid 2832 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
| 8 | topontop 22816 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 10 | dvmptntr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 11 | toponuni 22817 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
| 12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
| 13 | 10, 12 | sseqtrd 3974 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 15 | 14 | ntridm 22971 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 16 | 9, 13, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 17 | dvmptntr.i | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
| 18 | 17 | fveq2d 6830 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
| 19 | 16, 18 | eqtr3d 2766 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = ((int‘𝐽)‘𝑌)) |
| 20 | 19 | reseq2d 5934 | . . . 4 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
| 21 | dvmptntr.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 22 | 21 | fmpttd 7053 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 23 | 2, 1 | dvres 25828 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
| 24 | 4, 22, 10, 10, 23 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
| 25 | 14 | ntrss2 22960 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 26 | 9, 13, 25 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 27 | 17, 26 | eqsstrrd 3973 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 28 | 27, 10 | sstrd 3948 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
| 29 | 2, 1 | dvres 25828 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
| 30 | 4, 22, 10, 28, 29 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
| 31 | 20, 24, 30 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌))) |
| 32 | ssid 3960 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
| 33 | resmpt 5992 | . . . . 5 ⊢ (𝑋 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
| 34 | 32, 33 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 35 | 34 | oveq2d 7369 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 36 | 31, 35 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 37 | 27 | resmptd 5995 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 38 | 37 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| 39 | 36, 38 | eqtr3d 2766 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 ↦ cmpt 5176 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ↾t crest 17342 TopOpenctopn 17343 ℂfldccnfld 21279 Topctop 22796 TopOnctopon 22813 intcnt 22920 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-topn 17345 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-cnp 23131 df-xms 24224 df-ms 24225 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: rolle 25910 cmvth 25911 cmvthOLD 25912 dvlip 25914 dvlipcn 25915 dvle 25928 dvfsumabs 25945 ftc2 25967 itgparts 25970 itgsubstlem 25971 lgamgulmlem2 26956 ftc2nc 37684 areacirc 37695 itgsin0pilem1 45935 itgsbtaddcnst 45967 |
| Copyright terms: Public domain | W3C validator |