Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvmptntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvmptntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvmptntr.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
dvmptntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
dvmptntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvmptntr | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptntr.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
2 | dvmptntr.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 23957 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
4 | dvmptntr.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
5 | resttopon 22323 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
6 | 3, 4, 5 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
7 | 1, 6 | eqeltrid 2845 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
8 | topontop 22073 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
10 | dvmptntr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
11 | toponuni 22074 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
13 | 10, 12 | sseqtrd 3966 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
14 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
15 | 14 | ntridm 22230 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
16 | 9, 13, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
17 | dvmptntr.i | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
18 | 17 | fveq2d 6775 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
19 | 16, 18 | eqtr3d 2782 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = ((int‘𝐽)‘𝑌)) |
20 | 19 | reseq2d 5890 | . . . 4 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
21 | dvmptntr.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
22 | 21 | fmpttd 6986 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
23 | 2, 1 | dvres 25086 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
24 | 4, 22, 10, 10, 23 | syl22anc 836 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
25 | 14 | ntrss2 22219 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
26 | 9, 13, 25 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
27 | 17, 26 | eqsstrrd 3965 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
28 | 27, 10 | sstrd 3936 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
29 | 2, 1 | dvres 25086 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
30 | 4, 22, 10, 28, 29 | syl22anc 836 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
31 | 20, 24, 30 | 3eqtr4d 2790 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌))) |
32 | ssid 3948 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
33 | resmpt 5944 | . . . . 5 ⊢ (𝑋 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
34 | 32, 33 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
35 | 34 | oveq2d 7288 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
36 | 31, 35 | eqtr3d 2782 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
37 | 27 | resmptd 5947 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
38 | 37 | oveq2d 7288 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
39 | 36, 38 | eqtr3d 2782 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ↦ cmpt 5162 ↾ cres 5592 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 ℂcc 10880 ↾t crest 17142 TopOpenctopn 17143 ℂfldccnfld 20608 Topctop 22053 TopOnctopon 22070 intcnt 22179 D cdv 25038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-map 8609 df-pm 8610 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fi 9158 df-sup 9189 df-inf 9190 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-q 12700 df-rp 12742 df-xneg 12859 df-xadd 12860 df-xmul 12861 df-fz 13251 df-seq 13733 df-exp 13794 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-struct 16859 df-slot 16894 df-ndx 16906 df-base 16924 df-plusg 16986 df-mulr 16987 df-starv 16988 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-rest 17144 df-topn 17145 df-topgen 17165 df-psmet 20600 df-xmet 20601 df-met 20602 df-bl 20603 df-mopn 20604 df-cnfld 20609 df-top 22054 df-topon 22071 df-topsp 22093 df-bases 22107 df-cld 22181 df-ntr 22182 df-cls 22183 df-cnp 22390 df-xms 23484 df-ms 23485 df-limc 25041 df-dv 25042 |
This theorem is referenced by: rolle 25165 cmvth 25166 dvlip 25168 dvlipcn 25169 dvle 25182 dvfsumabs 25198 ftc2 25219 itgparts 25222 itgsubstlem 25223 lgamgulmlem2 26190 ftc2nc 35868 areacirc 35879 itgsin0pilem1 43473 itgsbtaddcnst 43505 |
Copyright terms: Public domain | W3C validator |