![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptntr | Structured version Visualization version GIF version |
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptntr.s | β’ (π β π β β) |
dvmptntr.x | β’ (π β π β π) |
dvmptntr.a | β’ ((π β§ π₯ β π) β π΄ β β) |
dvmptntr.j | β’ π½ = (πΎ βΎt π) |
dvmptntr.k | β’ πΎ = (TopOpenββfld) |
dvmptntr.i | β’ (π β ((intβπ½)βπ) = π) |
Ref | Expression |
---|---|
dvmptntr | β’ (π β (π D (π₯ β π β¦ π΄)) = (π D (π₯ β π β¦ π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptntr.j | . . . . . . . . 9 β’ π½ = (πΎ βΎt π) | |
2 | dvmptntr.k | . . . . . . . . . . 11 β’ πΎ = (TopOpenββfld) | |
3 | 2 | cnfldtopon 24719 | . . . . . . . . . 10 β’ πΎ β (TopOnββ) |
4 | dvmptntr.s | . . . . . . . . . 10 β’ (π β π β β) | |
5 | resttopon 23085 | . . . . . . . . . 10 β’ ((πΎ β (TopOnββ) β§ π β β) β (πΎ βΎt π) β (TopOnβπ)) | |
6 | 3, 4, 5 | sylancr 585 | . . . . . . . . 9 β’ (π β (πΎ βΎt π) β (TopOnβπ)) |
7 | 1, 6 | eqeltrid 2833 | . . . . . . . 8 β’ (π β π½ β (TopOnβπ)) |
8 | topontop 22835 | . . . . . . . 8 β’ (π½ β (TopOnβπ) β π½ β Top) | |
9 | 7, 8 | syl 17 | . . . . . . 7 β’ (π β π½ β Top) |
10 | dvmptntr.x | . . . . . . . 8 β’ (π β π β π) | |
11 | toponuni 22836 | . . . . . . . . 9 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
12 | 7, 11 | syl 17 | . . . . . . . 8 β’ (π β π = βͺ π½) |
13 | 10, 12 | sseqtrd 4022 | . . . . . . 7 β’ (π β π β βͺ π½) |
14 | eqid 2728 | . . . . . . . 8 β’ βͺ π½ = βͺ π½ | |
15 | 14 | ntridm 22992 | . . . . . . 7 β’ ((π½ β Top β§ π β βͺ π½) β ((intβπ½)β((intβπ½)βπ)) = ((intβπ½)βπ)) |
16 | 9, 13, 15 | syl2anc 582 | . . . . . 6 β’ (π β ((intβπ½)β((intβπ½)βπ)) = ((intβπ½)βπ)) |
17 | dvmptntr.i | . . . . . . 7 β’ (π β ((intβπ½)βπ) = π) | |
18 | 17 | fveq2d 6906 | . . . . . 6 β’ (π β ((intβπ½)β((intβπ½)βπ)) = ((intβπ½)βπ)) |
19 | 16, 18 | eqtr3d 2770 | . . . . 5 β’ (π β ((intβπ½)βπ) = ((intβπ½)βπ)) |
20 | 19 | reseq2d 5989 | . . . 4 β’ (π β ((π D (π₯ β π β¦ π΄)) βΎ ((intβπ½)βπ)) = ((π D (π₯ β π β¦ π΄)) βΎ ((intβπ½)βπ))) |
21 | dvmptntr.a | . . . . . 6 β’ ((π β§ π₯ β π) β π΄ β β) | |
22 | 21 | fmpttd 7130 | . . . . 5 β’ (π β (π₯ β π β¦ π΄):πβΆβ) |
23 | 2, 1 | dvres 25860 | . . . . 5 β’ (((π β β β§ (π₯ β π β¦ π΄):πβΆβ) β§ (π β π β§ π β π)) β (π D ((π₯ β π β¦ π΄) βΎ π)) = ((π D (π₯ β π β¦ π΄)) βΎ ((intβπ½)βπ))) |
24 | 4, 22, 10, 10, 23 | syl22anc 837 | . . . 4 β’ (π β (π D ((π₯ β π β¦ π΄) βΎ π)) = ((π D (π₯ β π β¦ π΄)) βΎ ((intβπ½)βπ))) |
25 | 14 | ntrss2 22981 | . . . . . . . 8 β’ ((π½ β Top β§ π β βͺ π½) β ((intβπ½)βπ) β π) |
26 | 9, 13, 25 | syl2anc 582 | . . . . . . 7 β’ (π β ((intβπ½)βπ) β π) |
27 | 17, 26 | eqsstrrd 4021 | . . . . . 6 β’ (π β π β π) |
28 | 27, 10 | sstrd 3992 | . . . . 5 β’ (π β π β π) |
29 | 2, 1 | dvres 25860 | . . . . 5 β’ (((π β β β§ (π₯ β π β¦ π΄):πβΆβ) β§ (π β π β§ π β π)) β (π D ((π₯ β π β¦ π΄) βΎ π)) = ((π D (π₯ β π β¦ π΄)) βΎ ((intβπ½)βπ))) |
30 | 4, 22, 10, 28, 29 | syl22anc 837 | . . . 4 β’ (π β (π D ((π₯ β π β¦ π΄) βΎ π)) = ((π D (π₯ β π β¦ π΄)) βΎ ((intβπ½)βπ))) |
31 | 20, 24, 30 | 3eqtr4d 2778 | . . 3 β’ (π β (π D ((π₯ β π β¦ π΄) βΎ π)) = (π D ((π₯ β π β¦ π΄) βΎ π))) |
32 | ssid 4004 | . . . . 5 β’ π β π | |
33 | resmpt 6046 | . . . . 5 β’ (π β π β ((π₯ β π β¦ π΄) βΎ π) = (π₯ β π β¦ π΄)) | |
34 | 32, 33 | mp1i 13 | . . . 4 β’ (π β ((π₯ β π β¦ π΄) βΎ π) = (π₯ β π β¦ π΄)) |
35 | 34 | oveq2d 7442 | . . 3 β’ (π β (π D ((π₯ β π β¦ π΄) βΎ π)) = (π D (π₯ β π β¦ π΄))) |
36 | 31, 35 | eqtr3d 2770 | . 2 β’ (π β (π D ((π₯ β π β¦ π΄) βΎ π)) = (π D (π₯ β π β¦ π΄))) |
37 | 27 | resmptd 6049 | . . 3 β’ (π β ((π₯ β π β¦ π΄) βΎ π) = (π₯ β π β¦ π΄)) |
38 | 37 | oveq2d 7442 | . 2 β’ (π β (π D ((π₯ β π β¦ π΄) βΎ π)) = (π D (π₯ β π β¦ π΄))) |
39 | 36, 38 | eqtr3d 2770 | 1 β’ (π β (π D (π₯ β π β¦ π΄)) = (π D (π₯ β π β¦ π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3949 βͺ cuni 4912 β¦ cmpt 5235 βΎ cres 5684 βΆwf 6549 βcfv 6553 (class class class)co 7426 βcc 11144 βΎt crest 17409 TopOpenctopn 17410 βfldccnfld 21286 Topctop 22815 TopOnctopon 22832 intcnt 22941 D cdv 25812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fi 9442 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-fz 13525 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-mulr 17254 df-starv 17255 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-rest 17411 df-topn 17412 df-topgen 17432 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cld 22943 df-ntr 22944 df-cls 22945 df-cnp 23152 df-xms 24246 df-ms 24247 df-limc 25815 df-dv 25816 |
This theorem is referenced by: rolle 25942 cmvth 25943 cmvthOLD 25944 dvlip 25946 dvlipcn 25947 dvle 25960 dvfsumabs 25977 ftc2 25999 itgparts 26002 itgsubstlem 26003 lgamgulmlem2 26982 ftc2nc 37208 areacirc 37219 itgsin0pilem1 45367 itgsbtaddcnst 45399 |
Copyright terms: Public domain | W3C validator |