| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptntr | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptntr.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvmptntr.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvmptntr.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptntr.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvmptntr.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvmptntr.i | ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvmptntr | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptntr.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 2 | dvmptntr.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 3 | 2 | cnfldtopon 24677 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 4 | dvmptntr.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 5 | resttopon 23055 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 7 | 1, 6 | eqeltrid 2833 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
| 8 | topontop 22807 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝐽 ∈ Top) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 10 | dvmptntr.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 11 | toponuni 22808 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐽) | |
| 12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = ∪ 𝐽) |
| 13 | 10, 12 | sseqtrd 3986 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ∪ 𝐽) |
| 14 | eqid 2730 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 15 | 14 | ntridm 22962 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 16 | 9, 13, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑋)) |
| 17 | dvmptntr.i | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) | |
| 18 | 17 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → ((int‘𝐽)‘((int‘𝐽)‘𝑋)) = ((int‘𝐽)‘𝑌)) |
| 19 | 16, 18 | eqtr3d 2767 | . . . . 5 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = ((int‘𝐽)‘𝑌)) |
| 20 | 19 | reseq2d 5953 | . . . 4 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
| 21 | dvmptntr.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 22 | 21 | fmpttd 7090 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 23 | 2, 1 | dvres 25819 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
| 24 | 4, 22, 10, 10, 23 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑋))) |
| 25 | 14 | ntrss2 22951 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽) → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 26 | 9, 13, 25 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((int‘𝐽)‘𝑋) ⊆ 𝑋) |
| 27 | 17, 26 | eqsstrrd 3985 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 28 | 27, 10 | sstrd 3960 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
| 29 | 2, 1 | dvres 25819 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
| 30 | 4, 22, 10, 28, 29 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ ((int‘𝐽)‘𝑌))) |
| 31 | 20, 24, 30 | 3eqtr4d 2775 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌))) |
| 32 | ssid 3972 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
| 33 | resmpt 6011 | . . . . 5 ⊢ (𝑋 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
| 34 | 32, 33 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 35 | 34 | oveq2d 7406 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 36 | 31, 35 | eqtr3d 2767 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 37 | 27 | resmptd 6014 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 38 | 37 | oveq2d 7406 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| 39 | 36, 38 | eqtr3d 2767 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 ↦ cmpt 5191 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ↾t crest 17390 TopOpenctopn 17391 ℂfldccnfld 21271 Topctop 22787 TopOnctopon 22804 intcnt 22911 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-cnp 23122 df-xms 24215 df-ms 24216 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: rolle 25901 cmvth 25902 cmvthOLD 25903 dvlip 25905 dvlipcn 25906 dvle 25919 dvfsumabs 25936 ftc2 25958 itgparts 25961 itgsubstlem 25962 lgamgulmlem2 26947 ftc2nc 37703 areacirc 37714 itgsin0pilem1 45955 itgsbtaddcnst 45987 |
| Copyright terms: Public domain | W3C validator |