| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochvalr3 | Structured version Visualization version GIF version | ||
| Description: Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| dochvalr3.o | ⊢ ⊥ = (oc‘𝐾) |
| dochvalr3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochvalr3.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dochvalr3.n | ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
| dochvalr3.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochvalr3.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
| Ref | Expression |
|---|---|
| dochvalr3 | ⊢ (𝜑 → ( ⊥ ‘(◡𝐼‘𝑋)) = (◡𝐼‘(𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochvalr3.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dochvalr3.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
| 3 | dochvalr3.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | eqid 2734 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 5 | dochvalr3.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 6 | eqid 2734 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 7 | 3, 4, 5, 6 | dihrnss 41218 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 8 | 1, 2, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 9 | dochvalr3.n | . . . . . 6 ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) | |
| 10 | 3, 5, 4, 6, 9 | dochcl 41293 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (𝑁‘𝑋) ∈ ran 𝐼) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑋) ∈ ran 𝐼) |
| 12 | 3, 5 | dihcnvid2 41213 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘𝑋) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘(𝑁‘𝑋))) = (𝑁‘𝑋)) |
| 13 | 1, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘(𝑁‘𝑋))) = (𝑁‘𝑋)) |
| 14 | dochvalr3.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 15 | 14, 3, 5, 9 | dochvalr 41297 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘𝑋)))) |
| 16 | 1, 2, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(◡𝐼‘𝑋)))) |
| 17 | 13, 16 | eqtr2d 2770 | . 2 ⊢ (𝜑 → (𝐼‘( ⊥ ‘(◡𝐼‘𝑋))) = (𝐼‘(◡𝐼‘(𝑁‘𝑋)))) |
| 18 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 19 | hlop 39301 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ OP) |
| 21 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 22 | 21, 3, 5 | dihcnvcl 41211 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
| 23 | 1, 2, 22 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
| 24 | 21, 14 | opoccl 39133 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾)) → ( ⊥ ‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾)) |
| 25 | 20, 23, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾)) |
| 26 | 21, 3, 5 | dihcnvcl 41211 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘𝑋) ∈ ran 𝐼) → (◡𝐼‘(𝑁‘𝑋)) ∈ (Base‘𝐾)) |
| 27 | 1, 11, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐼‘(𝑁‘𝑋)) ∈ (Base‘𝐾)) |
| 28 | 21, 3, 5 | dih11 41205 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘𝑋)) ∈ (Base‘𝐾)) → ((𝐼‘( ⊥ ‘(◡𝐼‘𝑋))) = (𝐼‘(◡𝐼‘(𝑁‘𝑋))) ↔ ( ⊥ ‘(◡𝐼‘𝑋)) = (◡𝐼‘(𝑁‘𝑋)))) |
| 29 | 1, 25, 27, 28 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐼‘( ⊥ ‘(◡𝐼‘𝑋))) = (𝐼‘(◡𝐼‘(𝑁‘𝑋))) ↔ ( ⊥ ‘(◡𝐼‘𝑋)) = (◡𝐼‘(𝑁‘𝑋)))) |
| 30 | 17, 29 | mpbid 232 | 1 ⊢ (𝜑 → ( ⊥ ‘(◡𝐼‘𝑋)) = (◡𝐼‘(𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3924 ◡ccnv 5650 ran crn 5652 ‘cfv 6527 Basecbs 17213 occoc 17264 OPcops 39111 HLchlt 39289 LHypclh 39924 DVecHcdvh 41018 DIsoHcdih 41168 ocHcoch 41287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-riotaBAD 38892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-undef 8266 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-0g 17440 df-proset 18291 df-poset 18310 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-cntz 19285 df-lsm 19602 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-dvr 20346 df-drng 20676 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-oposet 39115 df-ol 39117 df-oml 39118 df-covers 39205 df-ats 39206 df-atl 39237 df-cvlat 39261 df-hlat 39290 df-llines 39438 df-lplanes 39439 df-lvols 39440 df-lines 39441 df-psubsp 39443 df-pmap 39444 df-padd 39736 df-lhyp 39928 df-laut 39929 df-ldil 40044 df-ltrn 40045 df-trl 40099 df-tendo 40695 df-edring 40697 df-disoa 40969 df-dvech 41019 df-dib 41079 df-dic 41113 df-dih 41169 df-doch 41288 |
| This theorem is referenced by: dihoml4c 41316 |
| Copyright terms: Public domain | W3C validator |