Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om1addcl | Structured version Visualization version GIF version |
Description: Closure of the group operation of the loop space. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
om1bas.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
om1bas.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
om1bas.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
om1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
om1addcl.h | ⊢ (𝜑 → 𝐻 ∈ 𝐵) |
om1addcl.k | ⊢ (𝜑 → 𝐾 ∈ 𝐵) |
Ref | Expression |
---|---|
om1addcl | ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1addcl.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝐵) | |
2 | om1bas.o | . . . . . 6 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
3 | om1bas.j | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
4 | om1bas.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
5 | om1bas.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) | |
6 | 2, 3, 4, 5 | om1elbas 24266 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ 𝐵 ↔ (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = 𝑌 ∧ (𝐻‘1) = 𝑌))) |
7 | 1, 6 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐽) ∧ (𝐻‘0) = 𝑌 ∧ (𝐻‘1) = 𝑌)) |
8 | 7 | simp1d 1141 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
9 | om1addcl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝐵) | |
10 | 2, 3, 4, 5 | om1elbas 24266 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ 𝐵 ↔ (𝐾 ∈ (II Cn 𝐽) ∧ (𝐾‘0) = 𝑌 ∧ (𝐾‘1) = 𝑌))) |
11 | 9, 10 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐽) ∧ (𝐾‘0) = 𝑌 ∧ (𝐾‘1) = 𝑌)) |
12 | 11 | simp1d 1141 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐽)) |
13 | 7 | simp3d 1143 | . . . 4 ⊢ (𝜑 → (𝐻‘1) = 𝑌) |
14 | 11 | simp2d 1142 | . . . 4 ⊢ (𝜑 → (𝐾‘0) = 𝑌) |
15 | 13, 14 | eqtr4d 2780 | . . 3 ⊢ (𝜑 → (𝐻‘1) = (𝐾‘0)) |
16 | 8, 12, 15 | pcocn 24251 | . 2 ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽)) |
17 | 8, 12 | pco0 24248 | . . 3 ⊢ (𝜑 → ((𝐻(*𝑝‘𝐽)𝐾)‘0) = (𝐻‘0)) |
18 | 7 | simp2d 1142 | . . 3 ⊢ (𝜑 → (𝐻‘0) = 𝑌) |
19 | 17, 18 | eqtrd 2777 | . 2 ⊢ (𝜑 → ((𝐻(*𝑝‘𝐽)𝐾)‘0) = 𝑌) |
20 | 8, 12 | pco1 24249 | . . 3 ⊢ (𝜑 → ((𝐻(*𝑝‘𝐽)𝐾)‘1) = (𝐾‘1)) |
21 | 11 | simp3d 1143 | . . 3 ⊢ (𝜑 → (𝐾‘1) = 𝑌) |
22 | 20, 21 | eqtrd 2777 | . 2 ⊢ (𝜑 → ((𝐻(*𝑝‘𝐽)𝐾)‘1) = 𝑌) |
23 | 2, 3, 4, 5 | om1elbas 24266 | . 2 ⊢ (𝜑 → ((𝐻(*𝑝‘𝐽)𝐾) ∈ 𝐵 ↔ ((𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽) ∧ ((𝐻(*𝑝‘𝐽)𝐾)‘0) = 𝑌 ∧ ((𝐻(*𝑝‘𝐽)𝐾)‘1) = 𝑌))) |
24 | 16, 19, 22, 23 | mpbir3and 1341 | 1 ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 0cc0 10941 1c1 10942 Basecbs 16979 TopOnctopon 22130 Cn ccn 22446 IIcii 24109 *𝑝cpco 24234 Ω1 comi 24235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 ax-mulf 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-2o 8343 df-er 8544 df-map 8663 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-fi 9238 df-sup 9269 df-inf 9270 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-q 12759 df-rp 12801 df-xneg 12918 df-xadd 12919 df-xmul 12920 df-ioo 13153 df-icc 13156 df-fz 13310 df-fzo 13453 df-seq 13792 df-exp 13853 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-starv 17044 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-hom 17053 df-cco 17054 df-rest 17200 df-topn 17201 df-0g 17219 df-gsum 17220 df-topgen 17221 df-pt 17222 df-prds 17225 df-xrs 17280 df-qtop 17285 df-imas 17286 df-xps 17288 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-mulg 18768 df-cntz 18990 df-cmn 19455 df-psmet 20660 df-xmet 20661 df-met 20662 df-bl 20663 df-mopn 20664 df-cnfld 20669 df-top 22114 df-topon 22131 df-topsp 22153 df-bases 22167 df-cld 22241 df-cn 22449 df-cnp 22450 df-tx 22784 df-hmeo 22977 df-xms 23544 df-ms 23545 df-tms 23546 df-ii 24111 df-pco 24239 df-om1 24240 |
This theorem is referenced by: pi1cpbl 24278 pi1addf 24281 pi1addval 24282 pi1grplem 24283 |
Copyright terms: Public domain | W3C validator |