Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version |
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn | ⊢ ;10 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9p1e10 12439 | . 2 ⊢ (9 + 1) = ;10 | |
2 | 9nn 12071 | . . 3 ⊢ 9 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
5 | 1, 4 | eqeltrri 2836 | 1 ⊢ ;10 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ℕcn 11973 9c9 12035 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 |
This theorem is referenced by: 10pos 12454 decnncl2 12461 declt 12465 decltc 12466 declti 12475 dec10p 12480 3dec 13980 3dvds 16040 163prm 16826 631prm 16828 plendx 17076 pleid 17077 plendxnn 17078 otpsstr 17086 odrngstr 17113 imasvalstr 17162 isposixOLD 18044 ipostr 18247 cnfldstr 20599 bclbnd 26428 ex-prmo 28823 rpdp2cl 31156 dp2ltsuc 31160 dpmul10 31169 decdiv10 31170 dpmul100 31171 dp3mul10 31172 dpadd2 31184 dpadd 31185 dpadd3 31186 dpmul 31187 dpmul4 31188 oppgleOLD 31239 idlsrgstr 31647 hgt750lem 32631 tgoldbachgt 32643 60gcd6e6 40012 aks4d1p1p7 40082 rmydioph 40836 1t10e1p1e11 44802 257prm 45013 127prm 45051 3exp4mod41 45068 41prothprmlem1 45069 bgoldbtbndlem1 45257 bgoldbachlt 45265 tgblthelfgott 45267 tgoldbachlt 45268 |
Copyright terms: Public domain | W3C validator |