![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version |
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn | ⊢ ;10 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9p1e10 12733 | . 2 ⊢ (9 + 1) = ;10 | |
2 | 9nn 12362 | . . 3 ⊢ 9 ∈ ℕ | |
3 | peano2nn 12276 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
5 | 1, 4 | eqeltrri 2836 | 1 ⊢ ;10 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ℕcn 12264 9c9 12326 ;cdc 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-dec 12732 |
This theorem is referenced by: 10pos 12748 decnncl2 12755 declt 12759 decltc 12760 declti 12769 dec10p 12774 3dec 14302 3dvds 16365 163prm 17159 631prm 17161 plendx 17412 pleid 17413 plendxnn 17414 otpsstr 17422 odrngstr 17449 imasvalstr 17498 isposixOLD 18384 ipostr 18587 cnfldstr 21384 cnfldstrOLD 21399 bclbnd 27339 ex-prmo 30488 rpdp2cl 32849 dp2ltsuc 32853 dpmul10 32862 decdiv10 32863 dpmul100 32864 dp3mul10 32865 dpadd2 32877 dpadd 32878 dpadd3 32879 dpmul 32880 dpmul4 32881 oppgleOLD 32937 idlsrgstr 33510 hgt750lem 34645 tgoldbachgt 34657 60gcd6e6 41986 aks4d1p1p7 42056 rmydioph 43003 1t10e1p1e11 47260 257prm 47486 127prm 47524 3exp4mod41 47541 41prothprmlem1 47542 bgoldbtbndlem1 47730 bgoldbachlt 47738 tgblthelfgott 47740 tgoldbachlt 47741 |
Copyright terms: Public domain | W3C validator |