Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version |
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn | ⊢ ;10 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9p1e10 12541 | . 2 ⊢ (9 + 1) = ;10 | |
2 | 9nn 12173 | . . 3 ⊢ 9 ∈ ℕ | |
3 | peano2nn 12087 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
5 | 1, 4 | eqeltrri 2834 | 1 ⊢ ;10 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7338 0cc0 10973 1c1 10974 + caddc 10976 ℕcn 12075 9c9 12137 ;cdc 12539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-dec 12540 |
This theorem is referenced by: 10pos 12556 decnncl2 12563 declt 12567 decltc 12568 declti 12577 dec10p 12582 3dec 14082 3dvds 16140 163prm 16924 631prm 16926 plendx 17174 pleid 17175 plendxnn 17176 otpsstr 17184 odrngstr 17211 imasvalstr 17260 isposixOLD 18142 ipostr 18345 cnfldstr 20706 bclbnd 26535 ex-prmo 29112 rpdp2cl 31443 dp2ltsuc 31447 dpmul10 31456 decdiv10 31457 dpmul100 31458 dp3mul10 31459 dpadd2 31471 dpadd 31472 dpadd3 31473 dpmul 31474 dpmul4 31475 oppgleOLD 31526 idlsrgstr 31944 hgt750lem 32931 tgoldbachgt 32943 60gcd6e6 40317 aks4d1p1p7 40387 rmydioph 41150 1t10e1p1e11 45220 257prm 45431 127prm 45469 3exp4mod41 45486 41prothprmlem1 45487 bgoldbtbndlem1 45675 bgoldbachlt 45683 tgblthelfgott 45685 tgoldbachlt 45686 |
Copyright terms: Public domain | W3C validator |