![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version |
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn | ⊢ ;10 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9p1e10 12760 | . 2 ⊢ (9 + 1) = ;10 | |
2 | 9nn 12391 | . . 3 ⊢ 9 ∈ ℕ | |
3 | peano2nn 12305 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
5 | 1, 4 | eqeltrri 2841 | 1 ⊢ ;10 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ℕcn 12293 9c9 12355 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 |
This theorem is referenced by: 10pos 12775 decnncl2 12782 declt 12786 decltc 12787 declti 12796 dec10p 12801 3dec 14315 3dvds 16379 163prm 17172 631prm 17174 plendx 17425 pleid 17426 plendxnn 17427 otpsstr 17435 odrngstr 17462 imasvalstr 17511 isposixOLD 18396 ipostr 18599 cnfldstr 21389 cnfldstrOLD 21404 bclbnd 27342 ex-prmo 30491 rpdp2cl 32846 dp2ltsuc 32850 dpmul10 32859 decdiv10 32860 dpmul100 32861 dp3mul10 32862 dpadd2 32874 dpadd 32875 dpadd3 32876 dpmul 32877 dpmul4 32878 oppgleOLD 32934 idlsrgstr 33495 hgt750lem 34628 tgoldbachgt 34640 60gcd6e6 41961 aks4d1p1p7 42031 rmydioph 42971 1t10e1p1e11 47225 257prm 47435 127prm 47473 3exp4mod41 47490 41prothprmlem1 47491 bgoldbtbndlem1 47679 bgoldbachlt 47687 tgblthelfgott 47689 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |