| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version | ||
| Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn | ⊢ ;10 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9p1e10 12710 | . 2 ⊢ (9 + 1) = ;10 | |
| 2 | 9nn 12338 | . . 3 ⊢ 9 ∈ ℕ | |
| 3 | peano2nn 12252 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltrri 2831 | 1 ⊢ ;10 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 ℕcn 12240 9c9 12302 ;cdc 12708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-dec 12709 |
| This theorem is referenced by: 10pos 12725 decnncl2 12732 declt 12736 decltc 12737 declti 12746 dec10p 12751 3dec 14284 3dvds 16350 163prm 17144 631prm 17146 plendx 17380 pleid 17381 plendxnn 17382 otpsstr 17390 odrngstr 17417 imasvalstr 17465 ipostr 18539 cnfldstr 21317 cnfldstrOLD 21332 bclbnd 27243 ex-prmo 30440 rpdp2cl 32856 dp2ltsuc 32860 dpmul10 32869 decdiv10 32870 dpmul100 32871 dp3mul10 32872 dpadd2 32884 dpadd 32885 dpadd3 32886 dpmul 32887 dpmul4 32888 idlsrgstr 33517 hgt750lem 34683 tgoldbachgt 34695 60gcd6e6 42017 aks4d1p1p7 42087 rmydioph 43038 1t10e1p1e11 47339 257prm 47575 127prm 47613 3exp4mod41 47630 41prothprmlem1 47631 bgoldbtbndlem1 47819 bgoldbachlt 47827 tgblthelfgott 47829 tgoldbachlt 47830 |
| Copyright terms: Public domain | W3C validator |