MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  10nn Structured version   Visualization version   GIF version

Theorem 10nn 12672
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
10nn 10 ∈ ℕ

Proof of Theorem 10nn
StepHypRef Expression
1 9p1e10 12658 . 2 (9 + 1) = 10
2 9nn 12291 . . 3 9 ∈ ℕ
3 peano2nn 12205 . . 3 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (9 + 1) ∈ ℕ
51, 4eqeltrri 2826 1 10 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  9c9 12255  cdc 12656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-dec 12657
This theorem is referenced by:  10pos  12673  decnncl2  12680  declt  12684  decltc  12685  declti  12694  dec10p  12699  3dec  14238  3dvds  16308  163prm  17102  631prm  17104  plendx  17336  pleid  17337  plendxnn  17338  otpsstr  17346  odrngstr  17373  imasvalstr  17421  ipostr  18495  cnfldstr  21273  cnfldstrOLD  21288  bclbnd  27198  ex-prmo  30395  rpdp2cl  32809  dp2ltsuc  32813  dpmul10  32822  decdiv10  32823  dpmul100  32824  dp3mul10  32825  dpadd2  32837  dpadd  32838  dpadd3  32839  dpmul  32840  dpmul4  32841  idlsrgstr  33480  hgt750lem  34649  tgoldbachgt  34661  60gcd6e6  41999  aks4d1p1p7  42069  rmydioph  43010  1t10e1p1e11  47315  257prm  47566  127prm  47604  3exp4mod41  47621  41prothprmlem1  47622  bgoldbtbndlem1  47810  bgoldbachlt  47818  tgblthelfgott  47820  tgoldbachlt  47821
  Copyright terms: Public domain W3C validator