MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  10nn Structured version   Visualization version   GIF version

Theorem 10nn 12749
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
10nn 10 ∈ ℕ

Proof of Theorem 10nn
StepHypRef Expression
1 9p1e10 12735 . 2 (9 + 1) = 10
2 9nn 12364 . . 3 9 ∈ ℕ
3 peano2nn 12278 . . 3 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (9 + 1) ∈ ℕ
51, 4eqeltrri 2838 1 10 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cn 12266  9c9 12328  cdc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-dec 12734
This theorem is referenced by:  10pos  12750  decnncl2  12757  declt  12761  decltc  12762  declti  12771  dec10p  12776  3dec  14305  3dvds  16368  163prm  17162  631prm  17164  plendx  17410  pleid  17411  plendxnn  17412  otpsstr  17420  odrngstr  17447  imasvalstr  17496  isposixOLD  18371  ipostr  18574  cnfldstr  21366  cnfldstrOLD  21381  bclbnd  27324  ex-prmo  30478  rpdp2cl  32864  dp2ltsuc  32868  dpmul10  32877  decdiv10  32878  dpmul100  32879  dp3mul10  32880  dpadd2  32892  dpadd  32893  dpadd3  32894  dpmul  32895  dpmul4  32896  oppgleOLD  32952  idlsrgstr  33530  hgt750lem  34666  tgoldbachgt  34678  60gcd6e6  42005  aks4d1p1p7  42075  rmydioph  43026  1t10e1p1e11  47322  257prm  47548  127prm  47586  3exp4mod41  47603  41prothprmlem1  47604  bgoldbtbndlem1  47792  bgoldbachlt  47800  tgblthelfgott  47802  tgoldbachlt  47803
  Copyright terms: Public domain W3C validator