Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version |
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
10nn | ⊢ ;10 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9p1e10 12132 | . 2 ⊢ (9 + 1) = ;10 | |
2 | 9nn 11765 | . . 3 ⊢ 9 ∈ ℕ | |
3 | peano2nn 11679 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
5 | 1, 4 | eqeltrri 2850 | 1 ⊢ ;10 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 (class class class)co 7151 0cc0 10568 1c1 10569 + caddc 10571 ℕcn 11667 9c9 11729 ;cdc 12130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-ltxr 10711 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-dec 12131 |
This theorem is referenced by: 10pos 12147 decnncl2 12154 declt 12158 decltc 12159 declti 12168 dec10p 12173 3dec 13669 3dvds 15725 163prm 16509 631prm 16511 plendx 16717 pleid 16718 otpsstr 16719 ressle 16723 odrngstr 16730 imasvalstr 16776 isposix 17626 ipostr 17822 cnfldstr 20161 bclbnd 25956 ex-prmo 28336 rpdp2cl 30673 dp2ltsuc 30677 dpmul10 30686 decdiv10 30687 dpmul100 30688 dp3mul10 30689 dpadd2 30701 dpadd 30702 dpadd3 30703 dpmul 30704 dpmul4 30705 oppgle 30755 idlsrgstr 31161 hgt750lem 32143 tgoldbachgt 32155 60gcd6e6 39564 aks4d1p1p7 39633 rmydioph 40321 1t10e1p1e11 44228 257prm 44439 127prm 44477 3exp4mod41 44494 41prothprmlem1 44495 bgoldbtbndlem1 44683 bgoldbachlt 44691 tgblthelfgott 44693 tgoldbachlt 44694 |
Copyright terms: Public domain | W3C validator |