| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version | ||
| Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn | ⊢ ;10 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9p1e10 12598 | . 2 ⊢ (9 + 1) = ;10 | |
| 2 | 9nn 12232 | . . 3 ⊢ 9 ∈ ℕ | |
| 3 | peano2nn 12146 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltrri 2830 | 1 ⊢ ;10 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 ℕcn 12134 9c9 12196 ;cdc 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-dec 12597 |
| This theorem is referenced by: 10pos 12613 decnncl2 12620 declt 12624 decltc 12625 declti 12634 dec10p 12639 3dec 14177 3dvds 16246 163prm 17040 631prm 17042 plendx 17274 pleid 17275 plendxnn 17276 otpsstr 17284 odrngstr 17311 imasvalstr 17359 ipostr 18439 cnfldstr 21297 cnfldstrOLD 21312 bclbnd 27221 ex-prmo 30443 rpdp2cl 32871 dp2ltsuc 32875 dpmul10 32884 decdiv10 32885 dpmul100 32886 dp3mul10 32887 dpadd2 32899 dpadd 32900 dpadd3 32901 dpmul 32902 dpmul4 32903 idlsrgstr 33476 hgt750lem 34687 tgoldbachgt 34699 60gcd6e6 42120 aks4d1p1p7 42190 rmydioph 43134 1t10e1p1e11 47437 257prm 47688 127prm 47726 3exp4mod41 47743 41prothprmlem1 47744 bgoldbtbndlem1 47932 bgoldbachlt 47940 tgblthelfgott 47942 tgoldbachlt 47943 |
| Copyright terms: Public domain | W3C validator |