| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10nn | Structured version Visualization version GIF version | ||
| Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn | ⊢ ;10 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9p1e10 12590 | . 2 ⊢ (9 + 1) = ;10 | |
| 2 | 9nn 12223 | . . 3 ⊢ 9 ∈ ℕ | |
| 3 | peano2nn 12137 | . . 3 ⊢ (9 ∈ ℕ → (9 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (9 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltrri 2828 | 1 ⊢ ;10 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ℕcn 12125 9c9 12187 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-dec 12589 |
| This theorem is referenced by: 10pos 12605 decnncl2 12612 declt 12616 decltc 12617 declti 12626 dec10p 12631 3dec 14173 3dvds 16242 163prm 17036 631prm 17038 plendx 17270 pleid 17271 plendxnn 17272 otpsstr 17280 odrngstr 17307 imasvalstr 17355 ipostr 18435 cnfldstr 21294 cnfldstrOLD 21309 bclbnd 27219 ex-prmo 30437 rpdp2cl 32860 dp2ltsuc 32864 dpmul10 32873 decdiv10 32874 dpmul100 32875 dp3mul10 32876 dpadd2 32888 dpadd 32889 dpadd3 32890 dpmul 32891 dpmul4 32892 idlsrgstr 33465 hgt750lem 34662 tgoldbachgt 34674 60gcd6e6 42043 aks4d1p1p7 42113 rmydioph 43053 1t10e1p1e11 47347 257prm 47598 127prm 47636 3exp4mod41 47653 41prothprmlem1 47654 bgoldbtbndlem1 47842 bgoldbachlt 47850 tgblthelfgott 47852 tgoldbachlt 47853 |
| Copyright terms: Public domain | W3C validator |