Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tdeglem1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of tdeglem1 25220 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
Ref | Expression |
---|---|
tdeglem1OLD | ⊢ (𝐼 ∈ 𝑉 → 𝐻:𝐴⟶ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfld0 20622 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
2 | cnring 20620 | . . . 4 ⊢ ℂfld ∈ Ring | |
3 | ringcmn 19820 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℂfld ∈ CMnd) |
5 | simpl 483 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → 𝐼 ∈ 𝑉) | |
6 | nn0subm 20653 | . . . 4 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℕ0 ∈ (SubMnd‘ℂfld)) |
8 | tdeglem.a | . . . 4 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
9 | 8 | psrbagfOLD 21122 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℎ:𝐼⟶ℕ0) |
10 | 8 | psrbagfsuppOLD 21124 | . . . 4 ⊢ ((ℎ ∈ 𝐴 ∧ 𝐼 ∈ 𝑉) → ℎ finSupp 0) |
11 | 10 | ancoms 459 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℎ finSupp 0) |
12 | 1, 4, 5, 7, 9, 11 | gsumsubmcl 19520 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → (ℂfld Σg ℎ) ∈ ℕ0) |
13 | tdeglem.h | . 2 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
14 | 12, 13 | fmptd 6988 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻:𝐴⟶ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 finSupp cfsupp 9128 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 Σg cgsu 17151 SubMndcsubmnd 18429 CMndccmn 19386 Ringcrg 19783 ℂfldccnfld 20597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-cnfld 20598 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |