Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Visualization version   GIF version

Theorem irrapxlem2 41132
Description: Lemma for irrapx1 41137. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 41131 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
2 nnre 12160 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
32ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
4 rpre 12923 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
54ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
6 elfzelz 13441 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℤ)
76zred 12607 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℝ)
87ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑥 ∈ ℝ)
95, 8remulcld 11185 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑥) ∈ ℝ)
10 1rp 12919 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ+)
129, 11modcld 13780 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℝ)
133, 12remulcld 11185 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ)
14 intfrac 13791 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
16 elfzelz 13441 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℤ)
1716zred 12607 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℝ)
1817adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑦 ∈ ℝ)
195, 18remulcld 11185 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑦) ∈ ℝ)
2019, 11modcld 13780 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℝ)
213, 20remulcld 11185 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
22 intfrac 13791 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2321, 22syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2415, 23oveq12d 7375 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
2524fveq2d 6846 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
2625adantr 481 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
27 simpr 485 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
2827oveq1d 7372 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
2928oveq1d 7372 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
3029fveq2d 6846 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
3121flcld 13703 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℤ)
3231zcnd 12608 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℂ)
3313, 11modcld 13780 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℝ)
3433recnd 11183 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℂ)
3521, 11modcld 13780 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℝ)
3635recnd 11183 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℂ)
3732, 34, 36pnpcand 11549 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
3837fveq2d 6846 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
39 0red 11158 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ∈ ℝ)
40 1red 11156 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ)
41 modelico 13786 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
4213, 10, 41sylancl 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
43 modelico 13786 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
4421, 10, 43sylancl 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
45 icodiamlt 15320 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1) ∧ ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
4639, 40, 42, 44, 45syl22anc 837 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
47 1m0e1 12274 . . . . . . . . . . . 12 (1 − 0) = 1
4846, 47breqtrdi 5146 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < 1)
4938, 48eqbrtrd 5127 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5049adantr 481 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5130, 50eqbrtrd 5127 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5226, 51eqbrtrd 5127 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1)
5352ex 413 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
5412, 20resubcld 11583 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
5554recnd 11183 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℂ)
5655abscld 15321 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ)
57 nngt0 12184 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
5857ad3antlr 729 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 < 𝐵)
5958gt0ne0d 11719 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ≠ 0)
603, 59rereccld 11982 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (1 / 𝐵) ∈ ℝ)
61 ltmul2 12006 . . . . . . . 8 (((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ ∧ (1 / 𝐵) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
6256, 60, 3, 58, 61syl112anc 1374 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
63 nnnn0 12420 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
6463nn0ge0d 12476 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
6564ad3antlr 729 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ≤ 𝐵)
663, 65absidd 15307 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘𝐵) = 𝐵)
6766eqcomd 2742 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 = (abs‘𝐵))
6867oveq1d 7372 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
693recnd 11183 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
7069, 55absmuld 15339 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
7112recnd 11183 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℂ)
7220recnd 11183 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℂ)
7369, 71, 72subdid 11611 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) = ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))))
7473fveq2d 6846 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7568, 70, 743eqtr2d 2782 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7669, 59recidd 11926 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (1 / 𝐵)) = 1)
7775, 76breq12d 5118 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵)) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7862, 77bitrd 278 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7953, 78sylibrd 258 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
8079anim2d 612 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8180reximdva 3165 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) → (∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8281reximdva 3165 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
831, 82mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  +crp 12915  [,)cico 13266  ...cfz 13424  cfl 13695   mod cmo 13774  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  irrapxlem3  41133
  Copyright terms: Public domain W3C validator