Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Visualization version   GIF version

Theorem irrapxlem2 39413
Description: Lemma for irrapx1 39418. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 39412 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
2 nnre 11639 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
32ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
4 rpre 12391 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
54ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
6 elfzelz 12902 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℤ)
76zred 12081 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℝ)
87ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑥 ∈ ℝ)
95, 8remulcld 10665 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑥) ∈ ℝ)
10 1rp 12387 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ+)
129, 11modcld 13237 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℝ)
133, 12remulcld 10665 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ)
14 intfrac 13248 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
16 elfzelz 12902 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℤ)
1716zred 12081 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℝ)
1817adantl 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑦 ∈ ℝ)
195, 18remulcld 10665 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑦) ∈ ℝ)
2019, 11modcld 13237 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℝ)
213, 20remulcld 10665 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
22 intfrac 13248 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2321, 22syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2415, 23oveq12d 7168 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
2524fveq2d 6668 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
2625adantr 483 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
27 simpr 487 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
2827oveq1d 7165 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
2928oveq1d 7165 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
3029fveq2d 6668 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
3121flcld 13162 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℤ)
3231zcnd 12082 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℂ)
3313, 11modcld 13237 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℝ)
3433recnd 10663 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℂ)
3521, 11modcld 13237 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℝ)
3635recnd 10663 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℂ)
3732, 34, 36pnpcand 11028 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
3837fveq2d 6668 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
39 0red 10638 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ∈ ℝ)
40 1red 10636 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ)
41 modelico 13243 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
4213, 10, 41sylancl 588 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
43 modelico 13243 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
4421, 10, 43sylancl 588 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
45 icodiamlt 14789 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1) ∧ ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
4639, 40, 42, 44, 45syl22anc 836 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
47 1m0e1 11752 . . . . . . . . . . . 12 (1 − 0) = 1
4846, 47breqtrdi 5099 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < 1)
4938, 48eqbrtrd 5080 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5049adantr 483 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5130, 50eqbrtrd 5080 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5226, 51eqbrtrd 5080 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1)
5352ex 415 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
5412, 20resubcld 11062 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
5554recnd 10663 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℂ)
5655abscld 14790 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ)
57 nngt0 11662 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
5857ad3antlr 729 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 < 𝐵)
5958gt0ne0d 11198 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ≠ 0)
603, 59rereccld 11461 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (1 / 𝐵) ∈ ℝ)
61 ltmul2 11485 . . . . . . . 8 (((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ ∧ (1 / 𝐵) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
6256, 60, 3, 58, 61syl112anc 1370 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
63 nnnn0 11898 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
6463nn0ge0d 11952 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
6564ad3antlr 729 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ≤ 𝐵)
663, 65absidd 14776 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘𝐵) = 𝐵)
6766eqcomd 2827 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 = (abs‘𝐵))
6867oveq1d 7165 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
693recnd 10663 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
7069, 55absmuld 14808 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
7112recnd 10663 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℂ)
7220recnd 10663 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℂ)
7369, 71, 72subdid 11090 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) = ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))))
7473fveq2d 6668 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7568, 70, 743eqtr2d 2862 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7669, 59recidd 11405 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (1 / 𝐵)) = 1)
7775, 76breq12d 5071 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵)) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7862, 77bitrd 281 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7953, 78sylibrd 261 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
8079anim2d 613 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8180reximdva 3274 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) → (∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8281reximdva 3274 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
831, 82mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  +crp 12383  [,)cico 12734  ...cfz 12886  cfl 13154   mod cmo 13231  abscabs 14587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589
This theorem is referenced by:  irrapxlem3  39414
  Copyright terms: Public domain W3C validator