Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Visualization version   GIF version

Theorem irrapxlem2 42818
Description: Lemma for irrapx1 42823. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 42817 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
2 nnre 12200 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
32ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
4 rpre 12967 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
54ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
6 elfzelz 13492 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℤ)
76zred 12645 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℝ)
87ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑥 ∈ ℝ)
95, 8remulcld 11211 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑥) ∈ ℝ)
10 1rp 12962 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ+)
129, 11modcld 13844 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℝ)
133, 12remulcld 11211 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ)
14 intfrac 13855 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
16 elfzelz 13492 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℤ)
1716zred 12645 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℝ)
1817adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑦 ∈ ℝ)
195, 18remulcld 11211 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑦) ∈ ℝ)
2019, 11modcld 13844 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℝ)
213, 20remulcld 11211 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
22 intfrac 13855 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2321, 22syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2415, 23oveq12d 7408 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
2524fveq2d 6865 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
2625adantr 480 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
27 simpr 484 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
2827oveq1d 7405 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
2928oveq1d 7405 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
3029fveq2d 6865 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
3121flcld 13767 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℤ)
3231zcnd 12646 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℂ)
3313, 11modcld 13844 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℝ)
3433recnd 11209 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℂ)
3521, 11modcld 13844 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℝ)
3635recnd 11209 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℂ)
3732, 34, 36pnpcand 11577 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
3837fveq2d 6865 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
39 0red 11184 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ∈ ℝ)
40 1red 11182 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ)
41 modelico 13850 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
4213, 10, 41sylancl 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
43 modelico 13850 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
4421, 10, 43sylancl 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
45 icodiamlt 15411 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1) ∧ ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
4639, 40, 42, 44, 45syl22anc 838 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
47 1m0e1 12309 . . . . . . . . . . . 12 (1 − 0) = 1
4846, 47breqtrdi 5151 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < 1)
4938, 48eqbrtrd 5132 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5049adantr 480 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5130, 50eqbrtrd 5132 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5226, 51eqbrtrd 5132 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1)
5352ex 412 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
5412, 20resubcld 11613 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
5554recnd 11209 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℂ)
5655abscld 15412 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ)
57 nngt0 12224 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
5857ad3antlr 731 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 < 𝐵)
5958gt0ne0d 11749 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ≠ 0)
603, 59rereccld 12016 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (1 / 𝐵) ∈ ℝ)
61 ltmul2 12040 . . . . . . . 8 (((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ ∧ (1 / 𝐵) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
6256, 60, 3, 58, 61syl112anc 1376 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
63 nnnn0 12456 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
6463nn0ge0d 12513 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
6564ad3antlr 731 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ≤ 𝐵)
663, 65absidd 15396 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘𝐵) = 𝐵)
6766eqcomd 2736 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 = (abs‘𝐵))
6867oveq1d 7405 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
693recnd 11209 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
7069, 55absmuld 15430 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
7112recnd 11209 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℂ)
7220recnd 11209 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℂ)
7369, 71, 72subdid 11641 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) = ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))))
7473fveq2d 6865 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7568, 70, 743eqtr2d 2771 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7669, 59recidd 11960 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (1 / 𝐵)) = 1)
7775, 76breq12d 5123 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵)) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7862, 77bitrd 279 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7953, 78sylibrd 259 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
8079anim2d 612 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8180reximdva 3147 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) → (∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8281reximdva 3147 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
831, 82mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  +crp 12958  [,)cico 13315  ...cfz 13475  cfl 13759   mod cmo 13838  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  irrapxlem3  42819
  Copyright terms: Public domain W3C validator