Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Wrap >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  young2d Structured version   Visualization version   GIF version

Theorem young2d 49933
Description: Young's inequality for 𝑛 = 2, a direct application of amgmw2d 49932. (Contributed by Kunhao Zheng, 6-Jul-2021.)
Hypotheses
Ref Expression
young2d.0 (𝜑𝐴 ∈ ℝ+)
young2d.1 (𝜑𝑃 ∈ ℝ+)
young2d.2 (𝜑𝐵 ∈ ℝ+)
young2d.3 (𝜑𝑄 ∈ ℝ+)
young2d.4 (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1)
Assertion
Ref Expression
young2d (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴𝑐𝑃) / 𝑃) + ((𝐵𝑐𝑄) / 𝑄)))

Proof of Theorem young2d
StepHypRef Expression
1 young2d.0 . . . 4 (𝜑𝐴 ∈ ℝ+)
2 young2d.1 . . . . 5 (𝜑𝑃 ∈ ℝ+)
32rpred 12938 . . . 4 (𝜑𝑃 ∈ ℝ)
41, 3rpcxpcld 26672 . . 3 (𝜑 → (𝐴𝑐𝑃) ∈ ℝ+)
52rpreccld 12948 . . 3 (𝜑 → (1 / 𝑃) ∈ ℝ+)
6 young2d.2 . . . 4 (𝜑𝐵 ∈ ℝ+)
7 young2d.3 . . . . 5 (𝜑𝑄 ∈ ℝ+)
87rpred 12938 . . . 4 (𝜑𝑄 ∈ ℝ)
96, 8rpcxpcld 26672 . . 3 (𝜑 → (𝐵𝑐𝑄) ∈ ℝ+)
107rpreccld 12948 . . 3 (𝜑 → (1 / 𝑄) ∈ ℝ+)
11 young2d.4 . . 3 (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1)
124, 5, 9, 10, 11amgmw2d 49932 . 2 (𝜑 → (((𝐴𝑐𝑃)↑𝑐(1 / 𝑃)) · ((𝐵𝑐𝑄)↑𝑐(1 / 𝑄))) ≤ (((𝐴𝑐𝑃) · (1 / 𝑃)) + ((𝐵𝑐𝑄) · (1 / 𝑄))))
132rpcnd 12940 . . . . . 6 (𝜑𝑃 ∈ ℂ)
142rpne0d 12943 . . . . . 6 (𝜑𝑃 ≠ 0)
1513, 14recidd 11901 . . . . 5 (𝜑 → (𝑃 · (1 / 𝑃)) = 1)
1615oveq2d 7370 . . . 4 (𝜑 → (𝐴𝑐(𝑃 · (1 / 𝑃))) = (𝐴𝑐1))
1713, 14reccld 11899 . . . . 5 (𝜑 → (1 / 𝑃) ∈ ℂ)
181, 3, 17cxpmuld 26676 . . . 4 (𝜑 → (𝐴𝑐(𝑃 · (1 / 𝑃))) = ((𝐴𝑐𝑃)↑𝑐(1 / 𝑃)))
191rpcnd 12940 . . . . 5 (𝜑𝐴 ∈ ℂ)
2019cxp1d 26645 . . . 4 (𝜑 → (𝐴𝑐1) = 𝐴)
2116, 18, 203eqtr3d 2776 . . 3 (𝜑 → ((𝐴𝑐𝑃)↑𝑐(1 / 𝑃)) = 𝐴)
227rpcnd 12940 . . . . . 6 (𝜑𝑄 ∈ ℂ)
237rpne0d 12943 . . . . . 6 (𝜑𝑄 ≠ 0)
2422, 23recidd 11901 . . . . 5 (𝜑 → (𝑄 · (1 / 𝑄)) = 1)
2524oveq2d 7370 . . . 4 (𝜑 → (𝐵𝑐(𝑄 · (1 / 𝑄))) = (𝐵𝑐1))
2622, 23reccld 11899 . . . . 5 (𝜑 → (1 / 𝑄) ∈ ℂ)
276, 8, 26cxpmuld 26676 . . . 4 (𝜑 → (𝐵𝑐(𝑄 · (1 / 𝑄))) = ((𝐵𝑐𝑄)↑𝑐(1 / 𝑄)))
286rpcnd 12940 . . . . 5 (𝜑𝐵 ∈ ℂ)
2928cxp1d 26645 . . . 4 (𝜑 → (𝐵𝑐1) = 𝐵)
3025, 27, 293eqtr3d 2776 . . 3 (𝜑 → ((𝐵𝑐𝑄)↑𝑐(1 / 𝑄)) = 𝐵)
3121, 30oveq12d 7372 . 2 (𝜑 → (((𝐴𝑐𝑃)↑𝑐(1 / 𝑃)) · ((𝐵𝑐𝑄)↑𝑐(1 / 𝑄))) = (𝐴 · 𝐵))
324rpcnd 12940 . . . . 5 (𝜑 → (𝐴𝑐𝑃) ∈ ℂ)
3332, 13, 14divrecd 11909 . . . 4 (𝜑 → ((𝐴𝑐𝑃) / 𝑃) = ((𝐴𝑐𝑃) · (1 / 𝑃)))
349rpcnd 12940 . . . . 5 (𝜑 → (𝐵𝑐𝑄) ∈ ℂ)
3534, 22, 23divrecd 11909 . . . 4 (𝜑 → ((𝐵𝑐𝑄) / 𝑄) = ((𝐵𝑐𝑄) · (1 / 𝑄)))
3633, 35oveq12d 7372 . . 3 (𝜑 → (((𝐴𝑐𝑃) / 𝑃) + ((𝐵𝑐𝑄) / 𝑄)) = (((𝐴𝑐𝑃) · (1 / 𝑃)) + ((𝐵𝑐𝑄) · (1 / 𝑄))))
3736eqcomd 2739 . 2 (𝜑 → (((𝐴𝑐𝑃) · (1 / 𝑃)) + ((𝐵𝑐𝑄) · (1 / 𝑄))) = (((𝐴𝑐𝑃) / 𝑃) + ((𝐵𝑐𝑄) / 𝑄)))
3812, 31, 373brtr3d 5126 1 (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴𝑐𝑃) / 𝑃) + ((𝐵𝑐𝑄) / 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7354  1c1 11016   + caddc 11018   · cmul 11020  cle 11156   / cdiv 11783  +crp 12894  𝑐ccxp 26494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094  ax-mulf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-word 14425  df-concat 14482  df-s1 14508  df-s2 14759  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-mulg 18985  df-subg 19040  df-ghm 19129  df-gim 19175  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-subrng 20465  df-subrg 20489  df-drng 20650  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-refld 21546  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495  df-cxp 26496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator