Mathbox for Kunhao Zheng |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > young2d | Structured version Visualization version GIF version |
Description: Young's inequality for 𝑛 = 2, a direct application of amgmw2d 46460. (Contributed by Kunhao Zheng, 6-Jul-2021.) |
Ref | Expression |
---|---|
young2d.0 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
young2d.1 | ⊢ (𝜑 → 𝑃 ∈ ℝ+) |
young2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
young2d.3 | ⊢ (𝜑 → 𝑄 ∈ ℝ+) |
young2d.4 | ⊢ (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1) |
Ref | Expression |
---|---|
young2d | ⊢ (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | young2d.0 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | young2d.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℝ+) | |
3 | 2 | rpred 12754 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
4 | 1, 3 | rpcxpcld 25868 | . . 3 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℝ+) |
5 | 2 | rpreccld 12764 | . . 3 ⊢ (𝜑 → (1 / 𝑃) ∈ ℝ+) |
6 | young2d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
7 | young2d.3 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℝ+) | |
8 | 7 | rpred 12754 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
9 | 6, 8 | rpcxpcld 25868 | . . 3 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℝ+) |
10 | 7 | rpreccld 12764 | . . 3 ⊢ (𝜑 → (1 / 𝑄) ∈ ℝ+) |
11 | young2d.4 | . . 3 ⊢ (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1) | |
12 | 4, 5, 9, 10, 11 | amgmw2d 46460 | . 2 ⊢ (𝜑 → (((𝐴↑𝑐𝑃)↑𝑐(1 / 𝑃)) · ((𝐵↑𝑐𝑄)↑𝑐(1 / 𝑄))) ≤ (((𝐴↑𝑐𝑃) · (1 / 𝑃)) + ((𝐵↑𝑐𝑄) · (1 / 𝑄)))) |
13 | 2 | rpcnd 12756 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
14 | 2 | rpne0d 12759 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 0) |
15 | 13, 14 | recidd 11729 | . . . . 5 ⊢ (𝜑 → (𝑃 · (1 / 𝑃)) = 1) |
16 | 15 | oveq2d 7284 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐(𝑃 · (1 / 𝑃))) = (𝐴↑𝑐1)) |
17 | 13, 14 | reccld 11727 | . . . . 5 ⊢ (𝜑 → (1 / 𝑃) ∈ ℂ) |
18 | 1, 3, 17 | cxpmuld 25872 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐(𝑃 · (1 / 𝑃))) = ((𝐴↑𝑐𝑃)↑𝑐(1 / 𝑃))) |
19 | 1 | rpcnd 12756 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | 19 | cxp1d 25842 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐1) = 𝐴) |
21 | 16, 18, 20 | 3eqtr3d 2787 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑐𝑃)↑𝑐(1 / 𝑃)) = 𝐴) |
22 | 7 | rpcnd 12756 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
23 | 7 | rpne0d 12759 | . . . . . 6 ⊢ (𝜑 → 𝑄 ≠ 0) |
24 | 22, 23 | recidd 11729 | . . . . 5 ⊢ (𝜑 → (𝑄 · (1 / 𝑄)) = 1) |
25 | 24 | oveq2d 7284 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝑄 · (1 / 𝑄))) = (𝐵↑𝑐1)) |
26 | 22, 23 | reccld 11727 | . . . . 5 ⊢ (𝜑 → (1 / 𝑄) ∈ ℂ) |
27 | 6, 8, 26 | cxpmuld 25872 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐(𝑄 · (1 / 𝑄))) = ((𝐵↑𝑐𝑄)↑𝑐(1 / 𝑄))) |
28 | 6 | rpcnd 12756 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
29 | 28 | cxp1d 25842 | . . . 4 ⊢ (𝜑 → (𝐵↑𝑐1) = 𝐵) |
30 | 25, 27, 29 | 3eqtr3d 2787 | . . 3 ⊢ (𝜑 → ((𝐵↑𝑐𝑄)↑𝑐(1 / 𝑄)) = 𝐵) |
31 | 21, 30 | oveq12d 7286 | . 2 ⊢ (𝜑 → (((𝐴↑𝑐𝑃)↑𝑐(1 / 𝑃)) · ((𝐵↑𝑐𝑄)↑𝑐(1 / 𝑄))) = (𝐴 · 𝐵)) |
32 | 4 | rpcnd 12756 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑐𝑃) ∈ ℂ) |
33 | 32, 13, 14 | divrecd 11737 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑐𝑃) / 𝑃) = ((𝐴↑𝑐𝑃) · (1 / 𝑃))) |
34 | 9 | rpcnd 12756 | . . . . 5 ⊢ (𝜑 → (𝐵↑𝑐𝑄) ∈ ℂ) |
35 | 34, 22, 23 | divrecd 11737 | . . . 4 ⊢ (𝜑 → ((𝐵↑𝑐𝑄) / 𝑄) = ((𝐵↑𝑐𝑄) · (1 / 𝑄))) |
36 | 33, 35 | oveq12d 7286 | . . 3 ⊢ (𝜑 → (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄)) = (((𝐴↑𝑐𝑃) · (1 / 𝑃)) + ((𝐵↑𝑐𝑄) · (1 / 𝑄)))) |
37 | 36 | eqcomd 2745 | . 2 ⊢ (𝜑 → (((𝐴↑𝑐𝑃) · (1 / 𝑃)) + ((𝐵↑𝑐𝑄) · (1 / 𝑄))) = (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) |
38 | 12, 31, 37 | 3brtr3d 5109 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 1c1 10856 + caddc 10858 · cmul 10860 ≤ cle 10994 / cdiv 11615 ℝ+crp 12712 ↑𝑐ccxp 25692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-fi 9131 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-ioo 13065 df-ioc 13066 df-ico 13067 df-icc 13068 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-fac 13969 df-bc 13998 df-hash 14026 df-word 14199 df-concat 14255 df-s1 14282 df-s2 14542 df-shft 14759 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-limsup 15161 df-clim 15178 df-rlim 15179 df-sum 15379 df-ef 15758 df-sin 15760 df-cos 15761 df-pi 15763 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-hom 16967 df-cco 16968 df-rest 17114 df-topn 17115 df-0g 17133 df-gsum 17134 df-topgen 17135 df-pt 17136 df-prds 17139 df-xrs 17194 df-qtop 17199 df-imas 17200 df-xps 17202 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-mulg 18682 df-subg 18733 df-ghm 18813 df-gim 18856 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-dvr 19906 df-drng 19974 df-subrg 20003 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-fbas 20575 df-fg 20576 df-cnfld 20579 df-refld 20791 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cld 22151 df-ntr 22152 df-cls 22153 df-nei 22230 df-lp 22268 df-perf 22269 df-cn 22359 df-cnp 22360 df-haus 22447 df-cmp 22519 df-tx 22694 df-hmeo 22887 df-fil 22978 df-fm 23070 df-flim 23071 df-flf 23072 df-xms 23454 df-ms 23455 df-tms 23456 df-cncf 24022 df-limc 25011 df-dv 25012 df-log 25693 df-cxp 25694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |