MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylth Structured version   Visualization version   GIF version

Theorem taylth 26341
Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylth.r 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
Assertion
Ref Expression
taylth (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem taylth
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11226 . . 3 ℝ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 taylth.f . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 ax-resscn 11191 . . 3 ℝ ⊆ ℂ
5 fss 6727 . . 3 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
63, 4, 5sylancl 586 . 2 (𝜑𝐹:𝐴⟶ℂ)
7 taylth.a . 2 (𝜑𝐴 ⊆ ℝ)
8 taylth.d . 2 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
9 taylth.n . 2 (𝜑𝑁 ∈ ℕ)
10 taylth.b . 2 (𝜑𝐵𝐴)
11 taylth.t . 2 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
12 taylth.r . 2 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
133adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐹:𝐴⟶ℝ)
147adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐴 ⊆ ℝ)
158adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
169adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝑁 ∈ ℕ)
1710adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐵𝐴)
18 simprl 770 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝑚 ∈ (1..^𝑁))
19 simprr 772 . . . 4 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))
20 fveq2 6881 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥))
21 fveq2 6881 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥))
2220, 21oveq12d 7428 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)))
23 oveq1 7417 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
2423oveq1d 7425 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑚) = ((𝑥𝐵)↑𝑚))
2522, 24oveq12d 7428 . . . . . 6 (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)))
2625cbvmptv 5230 . . . . 5 (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)))
2726oveq1i 7420 . . . 4 ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)
2819, 27eleqtrdi 2845 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵))
2913, 14, 15, 16, 17, 11, 18, 28taylthlem2 26339 . 2 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑚 + 1)))) lim 𝐵))
302, 6, 7, 8, 9, 10, 11, 12, 29taylthlem1 26338 1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3928  wss 3931  {csn 4606  {cpr 4608  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  cmin 11471   / cdiv 11899  cn 12245  ..^cfzo 13676  cexp 14084   lim climc 25820   D𝑛 cdvn 25822   Tayl ctayl 26317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-subrng 20511  df-subrg 20535  df-drng 20696  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-refld 21570  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-0p 25628  df-limc 25824  df-dv 25825  df-dvn 25826  df-ply 26150  df-idp 26151  df-coe 26152  df-dgr 26153  df-tayl 26319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator