| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > taylth | Structured version Visualization version GIF version | ||
| Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| taylth.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| taylth.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| taylth.d | ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
| taylth.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| taylth.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| taylth.t | ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
| taylth.r | ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) |
| Ref | Expression |
|---|---|
| taylth | ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11136 | . . 3 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 3 | taylth.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | ax-resscn 11101 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 5 | fss 6686 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
| 6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 7 | taylth.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 8 | taylth.d | . 2 ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) | |
| 9 | taylth.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 10 | taylth.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 11 | taylth.t | . 2 ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) | |
| 12 | taylth.r | . 2 ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) | |
| 13 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐹:𝐴⟶ℝ) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐴 ⊆ ℝ) |
| 15 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
| 16 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑁 ∈ ℕ) |
| 17 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐵 ∈ 𝐴) |
| 18 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑚 ∈ (1..^𝑁)) | |
| 19 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵)) | |
| 20 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥)) | |
| 21 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) | |
| 22 | 20, 21 | oveq12d 7387 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥))) |
| 23 | oveq1 7376 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) | |
| 24 | 23 | oveq1d 7384 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑚) = ((𝑥 − 𝐵)↑𝑚)) |
| 25 | 22, 24 | oveq12d 7387 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
| 26 | 25 | cbvmptv 5206 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
| 27 | 26 | oveq1i 7379 | . . . 4 ⊢ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵) |
| 28 | 19, 27 | eleqtrdi 2838 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵)) |
| 29 | 13, 14, 15, 16, 17, 11, 18, 28 | taylthlem2 26258 | . 2 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑚 + 1)))) limℂ 𝐵)) |
| 30 | 2, 6, 7, 8, 9, 10, 11, 12, 29 | taylthlem1 26257 | 1 ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 {cpr 4587 ↦ cmpt 5183 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 − cmin 11381 / cdiv 11811 ℕcn 12162 ..^cfzo 13591 ↑cexp 14002 limℂ climc 25739 D𝑛 cdvn 25741 Tayl ctayl 26236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-fac 14215 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-subrng 20431 df-subrg 20455 df-drng 20616 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-refld 21490 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-cmp 23250 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-tsms 23990 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-0p 25547 df-limc 25743 df-dv 25744 df-dvn 25745 df-ply 26069 df-idp 26070 df-coe 26071 df-dgr 26072 df-tayl 26238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |