MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylth Structured version   Visualization version   GIF version

Theorem taylth 26284
Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylth.r 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
Assertion
Ref Expression
taylth (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem taylth
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11160 . . 3 ℝ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 taylth.f . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 ax-resscn 11125 . . 3 ℝ ⊆ ℂ
5 fss 6704 . . 3 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
63, 4, 5sylancl 586 . 2 (𝜑𝐹:𝐴⟶ℂ)
7 taylth.a . 2 (𝜑𝐴 ⊆ ℝ)
8 taylth.d . 2 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
9 taylth.n . 2 (𝜑𝑁 ∈ ℕ)
10 taylth.b . 2 (𝜑𝐵𝐴)
11 taylth.t . 2 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
12 taylth.r . 2 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
133adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐹:𝐴⟶ℝ)
147adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐴 ⊆ ℝ)
158adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
169adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝑁 ∈ ℕ)
1710adantr 480 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐵𝐴)
18 simprl 770 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝑚 ∈ (1..^𝑁))
19 simprr 772 . . . 4 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))
20 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥))
21 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥))
2220, 21oveq12d 7405 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)))
23 oveq1 7394 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
2423oveq1d 7402 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑚) = ((𝑥𝐵)↑𝑚))
2522, 24oveq12d 7405 . . . . . 6 (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)))
2625cbvmptv 5211 . . . . 5 (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)))
2726oveq1i 7397 . . . 4 ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)
2819, 27eleqtrdi 2838 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵))
2913, 14, 15, 16, 17, 11, 18, 28taylthlem2 26282 . 2 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑚 + 1)))) lim 𝐵))
302, 6, 7, 8, 9, 10, 11, 12, 29taylthlem1 26281 1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3911  wss 3914  {csn 4589  {cpr 4591  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  cmin 11405   / cdiv 11835  cn 12186  ..^cfzo 13615  cexp 14026   lim climc 25763   D𝑛 cdvn 25765   Tayl ctayl 26260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-refld 21514  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tsms 24014  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-dvn 25769  df-ply 26093  df-idp 26094  df-coe 26095  df-dgr 26096  df-tayl 26262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator