Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > taylth | Structured version Visualization version GIF version |
Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
taylth.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
taylth.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
taylth.d | ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
taylth.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
taylth.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
taylth.t | ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
taylth.r | ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) |
Ref | Expression |
---|---|
taylth | ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 11064 | . . 3 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
3 | taylth.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
4 | ax-resscn 11029 | . . 3 ⊢ ℝ ⊆ ℂ | |
5 | fss 6668 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
7 | taylth.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
8 | taylth.d | . 2 ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) | |
9 | taylth.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
10 | taylth.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
11 | taylth.t | . 2 ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) | |
12 | taylth.r | . 2 ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) | |
13 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐹:𝐴⟶ℝ) |
14 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐴 ⊆ ℝ) |
15 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
16 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑁 ∈ ℕ) |
17 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐵 ∈ 𝐴) |
18 | simprl 768 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑚 ∈ (1..^𝑁)) | |
19 | simprr 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵)) | |
20 | fveq2 6825 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥)) | |
21 | fveq2 6825 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) | |
22 | 20, 21 | oveq12d 7355 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥))) |
23 | oveq1 7344 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) | |
24 | 23 | oveq1d 7352 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑚) = ((𝑥 − 𝐵)↑𝑚)) |
25 | 22, 24 | oveq12d 7355 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
26 | 25 | cbvmptv 5205 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
27 | 26 | oveq1i 7347 | . . . 4 ⊢ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵) |
28 | 19, 27 | eleqtrdi 2847 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵)) |
29 | 13, 14, 15, 16, 17, 11, 18, 28 | taylthlem2 25639 | . 2 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑚 + 1)))) limℂ 𝐵)) |
30 | 2, 6, 7, 8, 9, 10, 11, 12, 29 | taylthlem1 25638 | 1 ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3895 ⊆ wss 3898 {csn 4573 {cpr 4575 ↦ cmpt 5175 dom cdm 5620 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 ℝcr 10971 0cc0 10972 1c1 10973 − cmin 11306 / cdiv 11733 ℕcn 12074 ..^cfzo 13483 ↑cexp 13883 limℂ climc 25132 D𝑛 cdvn 25134 Tayl ctayl 25618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-xnn0 12407 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-ioc 13185 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-fac 14089 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-sum 15497 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-mulg 18797 df-subg 18848 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-cring 19881 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-drng 20095 df-subrg 20127 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-refld 20916 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lp 22393 df-perf 22394 df-cn 22484 df-cnp 22485 df-haus 22572 df-cmp 22644 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-tsms 23384 df-xms 23579 df-ms 23580 df-tms 23581 df-cncf 24147 df-0p 24940 df-limc 25136 df-dv 25137 df-dvn 25138 df-ply 25455 df-idp 25456 df-coe 25457 df-dgr 25458 df-tayl 25620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |