| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > taylth | Structured version Visualization version GIF version | ||
| Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| taylth.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| taylth.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| taylth.d | ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
| taylth.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| taylth.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| taylth.t | ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
| taylth.r | ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) |
| Ref | Expression |
|---|---|
| taylth | ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11101 | . . 3 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 3 | taylth.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | ax-resscn 11066 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 5 | fss 6668 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
| 6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 7 | taylth.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 8 | taylth.d | . 2 ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) | |
| 9 | taylth.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 10 | taylth.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 11 | taylth.t | . 2 ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) | |
| 12 | taylth.r | . 2 ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) | |
| 13 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐹:𝐴⟶ℝ) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐴 ⊆ ℝ) |
| 15 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
| 16 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑁 ∈ ℕ) |
| 17 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐵 ∈ 𝐴) |
| 18 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑚 ∈ (1..^𝑁)) | |
| 19 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵)) | |
| 20 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥)) | |
| 21 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) | |
| 22 | 20, 21 | oveq12d 7367 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥))) |
| 23 | oveq1 7356 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) | |
| 24 | 23 | oveq1d 7364 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑚) = ((𝑥 − 𝐵)↑𝑚)) |
| 25 | 22, 24 | oveq12d 7367 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
| 26 | 25 | cbvmptv 5196 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
| 27 | 26 | oveq1i 7359 | . . . 4 ⊢ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵) |
| 28 | 19, 27 | eleqtrdi 2838 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵)) |
| 29 | 13, 14, 15, 16, 17, 11, 18, 28 | taylthlem2 26280 | . 2 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑚 + 1)))) limℂ 𝐵)) |
| 30 | 2, 6, 7, 8, 9, 10, 11, 12, 29 | taylthlem1 26279 | 1 ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 − cmin 11347 / cdiv 11777 ℕcn 12128 ..^cfzo 13557 ↑cexp 13968 limℂ climc 25761 D𝑛 cdvn 25763 Tayl ctayl 26258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-subrng 20431 df-subrg 20455 df-drng 20616 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-refld 21512 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tsms 24012 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-0p 25569 df-limc 25765 df-dv 25766 df-dvn 25767 df-ply 26091 df-idp 26092 df-coe 26093 df-dgr 26094 df-tayl 26260 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |