| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > taylth | Structured version Visualization version GIF version | ||
| Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| taylth.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| taylth.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| taylth.d | ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
| taylth.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| taylth.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| taylth.t | ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
| taylth.r | ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) |
| Ref | Expression |
|---|---|
| taylth | ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11098 | . . 3 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 3 | taylth.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | ax-resscn 11063 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 5 | fss 6667 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
| 6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 7 | taylth.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 8 | taylth.d | . 2 ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) | |
| 9 | taylth.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 10 | taylth.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 11 | taylth.t | . 2 ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) | |
| 12 | taylth.r | . 2 ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) | |
| 13 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐹:𝐴⟶ℝ) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐴 ⊆ ℝ) |
| 15 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
| 16 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑁 ∈ ℕ) |
| 17 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐵 ∈ 𝐴) |
| 18 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑚 ∈ (1..^𝑁)) | |
| 19 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵)) | |
| 20 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥)) | |
| 21 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) | |
| 22 | 20, 21 | oveq12d 7364 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥))) |
| 23 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) | |
| 24 | 23 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑚) = ((𝑥 − 𝐵)↑𝑚)) |
| 25 | 22, 24 | oveq12d 7364 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
| 26 | 25 | cbvmptv 5193 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
| 27 | 26 | oveq1i 7356 | . . . 4 ⊢ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵) |
| 28 | 19, 27 | eleqtrdi 2841 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵)) |
| 29 | 13, 14, 15, 16, 17, 11, 18, 28 | taylthlem2 26309 | . 2 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑚 + 1)))) limℂ 𝐵)) |
| 30 | 2, 6, 7, 8, 9, 10, 11, 12, 29 | taylthlem1 26308 | 1 ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 {cpr 4575 ↦ cmpt 5170 dom cdm 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 − cmin 11344 / cdiv 11774 ℕcn 12125 ..^cfzo 13554 ↑cexp 13968 limℂ climc 25790 D𝑛 cdvn 25792 Tayl ctayl 26287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-subrng 20461 df-subrg 20485 df-drng 20646 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-refld 21542 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tsms 24042 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-0p 25598 df-limc 25794 df-dv 25795 df-dvn 25796 df-ply 26120 df-idp 26121 df-coe 26122 df-dgr 26123 df-tayl 26289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |