MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylth Structured version   Visualization version   GIF version

Theorem taylth 24528
Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylth.f (𝜑𝐹:𝐴⟶ℝ)
taylth.a (𝜑𝐴 ⊆ ℝ)
taylth.d (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
taylth.n (𝜑𝑁 ∈ ℕ)
taylth.b (𝜑𝐵𝐴)
taylth.t 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
taylth.r 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
Assertion
Ref Expression
taylth (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem taylth
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10344 . . 3 ℝ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 taylth.f . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 ax-resscn 10309 . . 3 ℝ ⊆ ℂ
5 fss 6291 . . 3 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
63, 4, 5sylancl 582 . 2 (𝜑𝐹:𝐴⟶ℂ)
7 taylth.a . 2 (𝜑𝐴 ⊆ ℝ)
8 taylth.d . 2 (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
9 taylth.n . 2 (𝜑𝑁 ∈ ℕ)
10 taylth.b . 2 (𝜑𝐵𝐴)
11 taylth.t . 2 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵)
12 taylth.r . 2 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝑇𝑥)) / ((𝑥𝐵)↑𝑁)))
133adantr 474 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐹:𝐴⟶ℝ)
147adantr 474 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐴 ⊆ ℝ)
158adantr 474 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴)
169adantr 474 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝑁 ∈ ℕ)
1710adantr 474 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝐵𝐴)
18 simprl 789 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 𝑚 ∈ (1..^𝑁))
19 simprr 791 . . . 4 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))
20 fveq2 6433 . . . . . . . 8 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥))
21 fveq2 6433 . . . . . . . 8 (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥))
2220, 21oveq12d 6923 . . . . . . 7 (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)))
23 oveq1 6912 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐵) = (𝑥𝐵))
2423oveq1d 6920 . . . . . . 7 (𝑦 = 𝑥 → ((𝑦𝐵)↑𝑚) = ((𝑥𝐵)↑𝑚))
2522, 24oveq12d 6923 . . . . . 6 (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)))
2625cbvmptv 4973 . . . . 5 (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚)))
2726oveq1i 6915 . . . 4 ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵)
2819, 27syl6eleq 2916 . . 3 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑥)) / ((𝑥𝐵)↑𝑚))) lim 𝐵))
2913, 14, 15, 16, 17, 11, 18, 28taylthlem2 24527 . 2 ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁𝑚))‘𝑦)) / ((𝑦𝐵)↑𝑚))) lim 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥𝐵)↑(𝑚 + 1)))) lim 𝐵))
302, 6, 7, 8, 9, 10, 11, 12, 29taylthlem1 24526 1 (𝜑 → 0 ∈ (𝑅 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cdif 3795  wss 3798  {csn 4397  {cpr 4399  cmpt 4952  dom cdm 5342  wf 6119  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253  cmin 10585   / cdiv 11009  cn 11350  ..^cfzo 12760  cexp 13154   lim climc 24025   D𝑛 cdvn 24027   Tayl ctayl 24506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-fac 13354  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-rlim 14597  df-sum 14794  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-mulg 17895  df-subg 17942  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-oppr 18977  df-dvdsr 18995  df-unit 18996  df-invr 19026  df-dvr 19037  df-drng 19105  df-subrg 19134  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-refld 20312  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-cmp 21561  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-tsms 22300  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-0p 23836  df-limc 24029  df-dv 24030  df-dvn 24031  df-ply 24343  df-idp 24344  df-coe 24345  df-dgr 24346  df-tayl 24508
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator