![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resslem | Structured version Visualization version GIF version |
Description: Other elements of a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
resslem.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
resslem.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resslem.f | ⊢ 𝐸 = Slot 𝑁 |
resslem.n | ⊢ 𝑁 ∈ ℕ |
resslem.b | ⊢ 1 < 𝑁 |
Ref | Expression |
---|---|
resslem | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resslem.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | eqid 2794 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | 1, 2 | ressid2 16381 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
4 | 3 | fveq2d 6545 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
5 | 4 | 3expib 1115 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
6 | 1, 2 | ressval2 16382 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
7 | 6 | fveq2d 6545 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
8 | resslem.f | . . . . . . . 8 ⊢ 𝐸 = Slot 𝑁 | |
9 | resslem.n | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
10 | 8, 9 | ndxid 16338 | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) |
11 | 8, 9 | ndxarg 16337 | . . . . . . . . 9 ⊢ (𝐸‘ndx) = 𝑁 |
12 | 1re 10490 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
13 | resslem.b | . . . . . . . . . 10 ⊢ 1 < 𝑁 | |
14 | 12, 13 | gtneii 10601 | . . . . . . . . 9 ⊢ 𝑁 ≠ 1 |
15 | 11, 14 | eqnetri 3053 | . . . . . . . 8 ⊢ (𝐸‘ndx) ≠ 1 |
16 | basendx 16376 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
17 | 15, 16 | neeqtrri 3056 | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
18 | 10, 17 | setsnid 16368 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
19 | 7, 18 | syl6eqr 2848 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
20 | 19 | 3expib 1115 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
21 | 5, 20 | pm2.61i 183 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | reldmress 16379 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
23 | 22 | ovprc1 7057 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
24 | 1, 23 | syl5eq 2842 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → 𝑅 = ∅) |
25 | 24 | fveq2d 6545 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘∅)) |
26 | 8 | str0 16364 | . . . . . 6 ⊢ ∅ = (𝐸‘∅) |
27 | 25, 26 | syl6eqr 2848 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = ∅) |
28 | fvprc 6534 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = ∅) | |
29 | 27, 28 | eqtr4d 2833 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
30 | 29 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
31 | 21, 30 | pm2.61ian 808 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
32 | resslem.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
33 | 31, 32 | syl6reqr 2849 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2080 Vcvv 3436 ∩ cin 3860 ⊆ wss 3861 ∅c0 4213 〈cop 4480 class class class wbr 4964 ‘cfv 6228 (class class class)co 7019 1c1 10387 < clt 10524 ℕcn 11488 ndxcnx 16309 sSet csts 16310 Slot cslot 16311 Basecbs 16312 ↾s cress 16313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-mulcl 10448 ax-mulrcl 10449 ax-i2m1 10454 ax-1ne0 10455 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-pnf 10526 df-mnf 10527 df-ltxr 10529 df-nn 11489 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 |
This theorem is referenced by: ressplusg 16441 ressmulr 16454 ressstarv 16455 resssca 16479 ressvsca 16480 ressip 16481 resstset 16494 ressle 16501 ressds 16515 resshom 16520 ressco 16521 ressunif 22554 |
Copyright terms: Public domain | W3C validator |