MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrest Structured version   Visualization version   GIF version

Theorem xrrest 24322
Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
xrrest.1 𝑋 = (ordTopβ€˜ ≀ )
xrrest.2 𝑅 = (topGenβ€˜ran (,))
Assertion
Ref Expression
xrrest (𝐴 βŠ† ℝ β†’ (𝑋 β†Ύt 𝐴) = (𝑅 β†Ύt 𝐴))

Proof of Theorem xrrest
StepHypRef Expression
1 xrrest.2 . . . 4 𝑅 = (topGenβ€˜ran (,))
2 xrrest.1 . . . . . 6 𝑋 = (ordTopβ€˜ ≀ )
32oveq1i 7418 . . . . 5 (𝑋 β†Ύt ℝ) = ((ordTopβ€˜ ≀ ) β†Ύt ℝ)
43xrtgioo 24321 . . . 4 (topGenβ€˜ran (,)) = (𝑋 β†Ύt ℝ)
51, 4eqtri 2760 . . 3 𝑅 = (𝑋 β†Ύt ℝ)
65oveq1i 7418 . 2 (𝑅 β†Ύt 𝐴) = ((𝑋 β†Ύt ℝ) β†Ύt 𝐴)
72fvexi 6905 . . 3 𝑋 ∈ V
8 reex 11200 . . 3 ℝ ∈ V
9 restabs 22668 . . 3 ((𝑋 ∈ V ∧ 𝐴 βŠ† ℝ ∧ ℝ ∈ V) β†’ ((𝑋 β†Ύt ℝ) β†Ύt 𝐴) = (𝑋 β†Ύt 𝐴))
107, 8, 9mp3an13 1452 . 2 (𝐴 βŠ† ℝ β†’ ((𝑋 β†Ύt ℝ) β†Ύt 𝐴) = (𝑋 β†Ύt 𝐴))
116, 10eqtr2id 2785 1 (𝐴 βŠ† ℝ β†’ (𝑋 β†Ύt 𝐴) = (𝑅 β†Ύt 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3948  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  β„cr 11108   ≀ cle 11248  (,)cioo 13323   β†Ύt crest 17365  topGenctg 17382  ordTopcordt 17444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-ioo 13327  df-ioc 13328  df-ico 13329  df-icc 13330  df-rest 17367  df-topgen 17388  df-ordt 17446  df-ps 18518  df-tsr 18519  df-top 22395  df-topon 22412  df-bases 22448
This theorem is referenced by:  xrrest2  24323  dfii5  24400
  Copyright terms: Public domain W3C validator