MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rerest Structured version   Visualization version   GIF version

Theorem rerest 23130
Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
tgioo2.1 𝐽 = (TopOpen‘ℂfld)
rerest.2 𝑅 = (topGen‘ran (,))
Assertion
Ref Expression
rerest (𝐴 ⊆ ℝ → (𝐽t 𝐴) = (𝑅t 𝐴))

Proof of Theorem rerest
StepHypRef Expression
1 rerest.2 . . . 4 𝑅 = (topGen‘ran (,))
2 tgioo2.1 . . . . 5 𝐽 = (TopOpen‘ℂfld)
32tgioo2 23129 . . . 4 (topGen‘ran (,)) = (𝐽t ℝ)
41, 3eqtri 2804 . . 3 𝑅 = (𝐽t ℝ)
54oveq1i 6992 . 2 (𝑅t 𝐴) = ((𝐽t ℝ) ↾t 𝐴)
62cnfldtop 23110 . . 3 𝐽 ∈ Top
7 reex 10432 . . 3 ℝ ∈ V
8 restabs 21492 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V) → ((𝐽t ℝ) ↾t 𝐴) = (𝐽t 𝐴))
96, 7, 8mp3an13 1432 . 2 (𝐴 ⊆ ℝ → ((𝐽t ℝ) ↾t 𝐴) = (𝐽t 𝐴))
105, 9syl5req 2829 1 (𝐴 ⊆ ℝ → (𝐽t 𝐴) = (𝑅t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  Vcvv 3417  wss 3831  ran crn 5412  cfv 6193  (class class class)co 6982  cr 10340  (,)cioo 12560  t crest 16556  TopOpenctopn 16557  topGenctg 16573  fldccnfld 20262  Topctop 21220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-sup 8707  df-inf 8708  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-fz 12715  df-seq 13191  df-exp 13251  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-plusg 16440  df-mulr 16441  df-starv 16442  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-rest 16558  df-topn 16559  df-topgen 16579  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-xms 22648  df-ms 22649
This theorem is referenced by:  xrrest2  23134  cnmptre  23249  cnheiborlem  23276  cnmbf  23978  lhop2  24330  lhop  24331  cxpcn3  25045  resconn  32118  ivthALT  33244  limciccioolb  41368  limcicciooub  41384  fourierdlem48  41905  fourierdlem49  41906  fourierdlem62  41919
  Copyright terms: Public domain W3C validator