| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngghmlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for rngqiprngghm 21265. (Contributed by AV, 25-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| Ref | Expression |
|---|---|
| rngqiprngghmlem3 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rng2idlring.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rng2idlring.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | rng2idlring.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | rng2idlring.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 7 | rng2idlring.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | rngqiprng1elbas 21252 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 9 | 8 | anim1i 615 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 ∈ 𝐵 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) |
| 10 | 3anass 1094 | . . . 4 ⊢ (( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ ( 1 ∈ 𝐵 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) |
| 12 | eqid 2736 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 13 | 5, 12, 6 | rngdi 20125 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶))) |
| 14 | 1, 11, 13 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶))) |
| 15 | 3, 12 | ressplusg 17310 | . . . . 5 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → (+g‘𝑅) = (+g‘𝐽)) |
| 16 | 2, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝐽)) |
| 17 | 16 | oveqd 7427 | . . 3 ⊢ (𝜑 → (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| 19 | 14, 18 | eqtrd 2771 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 .rcmulr 17277 Rngcrng 20117 1rcur 20146 Ringcrg 20198 2Idealc2idl 21215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 |
| This theorem is referenced by: rngqiprngghm 21265 |
| Copyright terms: Public domain | W3C validator |