| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngghmlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for rngqiprngghm 21209. (Contributed by AV, 25-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| Ref | Expression |
|---|---|
| rngqiprngghmlem3 | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rng2idlring.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rng2idlring.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rng2idlring.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | rng2idlring.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | rng2idlring.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 7 | rng2idlring.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | rngqiprng1elbas 21196 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 9 | 8 | anim1i 615 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 ∈ 𝐵 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) |
| 10 | 3anass 1094 | . . . 4 ⊢ (( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ ( 1 ∈ 𝐵 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) |
| 12 | eqid 2729 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 13 | 5, 12, 6 | rngdi 20069 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶))) |
| 14 | 1, 11, 13 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶))) |
| 15 | 3, 12 | ressplusg 17254 | . . . . 5 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → (+g‘𝑅) = (+g‘𝐽)) |
| 16 | 2, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝐽)) |
| 17 | 16 | oveqd 7404 | . . 3 ⊢ (𝜑 → (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴)(+g‘𝑅)( 1 · 𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| 19 | 14, 18 | eqtrd 2764 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 Rngcrng 20061 1rcur 20090 Ringcrg 20142 2Idealc2idl 21159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: rngqiprngghm 21209 |
| Copyright terms: Public domain | W3C validator |