Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumfsupre | Structured version Visualization version GIF version |
Description: Formulating an extended sum over integers using the recursive sequence builder. This version is limited to real-valued functions. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
Ref | Expression |
---|---|
esumfsup.1 | ⊢ Ⅎ𝑘𝐹 |
Ref | Expression |
---|---|
esumfsupre | ⊢ (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹‘𝑘) = sup(ran seq1( + , 𝐹), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icossicc 12881 | . . . 4 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
2 | fss 6517 | . . . 4 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞)) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶(0[,]+∞)) |
4 | esumfsup.1 | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
5 | 4 | esumfsup 31570 | . . 3 ⊢ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹‘𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < )) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹‘𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < )) |
7 | 1zzd 12065 | . . . . 5 ⊢ (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ) | |
8 | elnnuz 12335 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ≥‘1)) | |
9 | ffvelrn 6846 | . . . . . 6 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ (0[,)+∞)) | |
10 | 8, 9 | sylan2br 597 | . . . . 5 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑥 ∈ (ℤ≥‘1)) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
11 | ge0addcl 12905 | . . . . . 6 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
12 | 11 | adantl 485 | . . . . 5 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
13 | rge0ssre 12901 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ | |
14 | simprl 770 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞)) | |
15 | 13, 14 | sseldi 3892 | . . . . . 6 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ) |
16 | simprr 772 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞)) | |
17 | 13, 16 | sseldi 3892 | . . . . . 6 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ) |
18 | rexadd 12679 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦)) | |
19 | 18 | eqcomd 2764 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦)) |
20 | 15, 17, 19 | syl2anc 587 | . . . . 5 ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦)) |
21 | 7, 10, 12, 20 | seqfeq3 13483 | . . . 4 ⊢ (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹) = seq1( +𝑒 , 𝐹)) |
22 | 21 | rneqd 5784 | . . 3 ⊢ (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) = ran seq1( +𝑒 , 𝐹)) |
23 | 22 | supeq1d 8956 | . 2 ⊢ (𝐹:ℕ⟶(0[,)+∞) → sup(ran seq1( + , 𝐹), ℝ*, < ) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < )) |
24 | 6, 23 | eqtr4d 2796 | 1 ⊢ (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹‘𝑘) = sup(ran seq1( + , 𝐹), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Ⅎwnfc 2899 ⊆ wss 3860 ran crn 5529 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 supcsup 8950 ℝcr 10587 0cc0 10588 1c1 10589 + caddc 10591 +∞cpnf 10723 ℝ*cxr 10725 < clt 10726 ℕcn 11687 ℤ≥cuz 12295 +𝑒 cxad 12559 [,)cico 12794 [,]cicc 12795 seqcseq 13431 Σ*cesum 31527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ioc 12797 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-mod 13300 df-seq 13432 df-exp 13493 df-fac 13697 df-bc 13726 df-hash 13754 df-shft 14487 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-limsup 14889 df-clim 14906 df-rlim 14907 df-sum 15104 df-ef 15482 df-sin 15484 df-cos 15485 df-pi 15487 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-pt 16790 df-prds 16793 df-ordt 16846 df-xrs 16847 df-qtop 16852 df-imas 16853 df-xps 16855 df-mre 16929 df-mrc 16930 df-acs 16932 df-ps 17890 df-tsr 17891 df-plusf 17931 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-submnd 18037 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mulg 18306 df-subg 18357 df-cntz 18528 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-ring 19381 df-cring 19382 df-subrg 19615 df-abv 19670 df-lmod 19718 df-scaf 19719 df-sra 20026 df-rgmod 20027 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-fbas 20177 df-fg 20178 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cld 21733 df-ntr 21734 df-cls 21735 df-nei 21812 df-lp 21850 df-perf 21851 df-cn 21941 df-cnp 21942 df-haus 22029 df-tx 22276 df-hmeo 22469 df-fil 22560 df-fm 22652 df-flim 22653 df-flf 22654 df-tmd 22786 df-tgp 22787 df-tsms 22841 df-trg 22874 df-xms 23036 df-ms 23037 df-tms 23038 df-nm 23298 df-ngp 23299 df-nrg 23301 df-nlm 23302 df-ii 23592 df-cncf 23593 df-limc 24579 df-dv 24580 df-log 25261 df-esum 31528 |
This theorem is referenced by: voliune 31729 |
Copyright terms: Public domain | W3C validator |