Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfsupre Structured version   Visualization version   GIF version

Theorem esumfsupre 34031
Description: Formulating an extended sum over integers using the recursive sequence builder. This version is limited to real-valued functions. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypothesis
Ref Expression
esumfsup.1 𝑘𝐹
Assertion
Ref Expression
esumfsupre (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( + , 𝐹), ℝ*, < ))

Proof of Theorem esumfsupre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icossicc 13458 . . . 4 (0[,)+∞) ⊆ (0[,]+∞)
2 fss 6732 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞))
31, 2mpan2 691 . . 3 (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶(0[,]+∞))
4 esumfsup.1 . . . 4 𝑘𝐹
54esumfsup 34030 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))
63, 5syl 17 . 2 (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))
7 1zzd 12631 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ)
8 elnnuz 12904 . . . . . 6 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
9 ffvelcdm 7081 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (0[,)+∞))
108, 9sylan2br 595 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ (0[,)+∞))
11 ge0addcl 13482 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
1211adantl 481 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
13 rge0ssre 13478 . . . . . . 7 (0[,)+∞) ⊆ ℝ
14 simprl 770 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ (0[,)+∞))
1513, 14sselid 3961 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑥 ∈ ℝ)
16 simprr 772 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ (0[,)+∞))
1713, 16sselid 3961 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → 𝑦 ∈ ℝ)
18 rexadd 13256 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦))
1918eqcomd 2740 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
2015, 17, 19syl2anc 584 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
217, 10, 12, 20seqfeq3 14075 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹) = seq1( +𝑒 , 𝐹))
2221rneqd 5929 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) = ran seq1( +𝑒 , 𝐹))
2322supeq1d 9468 . 2 (𝐹:ℕ⟶(0[,)+∞) → sup(ran seq1( + , 𝐹), ℝ*, < ) = sup(ran seq1( +𝑒 , 𝐹), ℝ*, < ))
246, 23eqtr4d 2772 1 (𝐹:ℕ⟶(0[,)+∞) → Σ*𝑘 ∈ ℕ(𝐹𝑘) = sup(ran seq1( + , 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wnfc 2882  wss 3931  ran crn 5666  wf 6537  cfv 6541  (class class class)co 7413  supcsup 9462  cr 11136  0cc0 11137  1c1 11138   + caddc 11140  +∞cpnf 11274  *cxr 11276   < clt 11277  cn 12248  cuz 12860   +𝑒 cxad 13134  [,)cico 13371  [,]cicc 13372  seqcseq 14024  Σ*cesum 33987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-ordt 17517  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-ps 18580  df-tsr 18581  df-plusf 18621  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20514  df-subrg 20538  df-abv 20778  df-lmod 20828  df-scaf 20829  df-sra 21140  df-rgmod 21141  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-tmd 24026  df-tgp 24027  df-tsms 24081  df-trg 24114  df-xms 24275  df-ms 24276  df-tms 24277  df-nm 24539  df-ngp 24540  df-nrg 24542  df-nlm 24543  df-ii 24839  df-cncf 24840  df-limc 25837  df-dv 25838  df-log 26534  df-esum 33988
This theorem is referenced by:  voliune  34189
  Copyright terms: Public domain W3C validator