Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem12 Structured version   Visualization version   GIF version

Theorem stoweidlem12 45933
Description: Lemma for stoweid 45984. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem12.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem12.2 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem12.3 (𝜑𝑁 ∈ ℕ0)
stoweidlem12.4 (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
stoweidlem12 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem12
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝑡𝑇) → 𝑡𝑇)
2 1red 11291 . . . 4 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
3 stoweidlem12.2 . . . . . 6 (𝜑𝑃:𝑇⟶ℝ)
43ffvelcdmda 7118 . . . . 5 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
5 stoweidlem12.3 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
65adantr 480 . . . . 5 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
74, 6reexpcld 14213 . . . 4 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
82, 7resubcld 11718 . . 3 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
9 stoweidlem12.4 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
109, 5jca 511 . . . . 5 (𝜑 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
1110adantr 480 . . . 4 ((𝜑𝑡𝑇) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
12 nn0expcl 14126 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℕ0)
1311, 12syl 17 . . 3 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
148, 13reexpcld 14213 . 2 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
15 stoweidlem12.1 . . 3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
1615fvmpt2 7040 . 2 ((𝑡𝑇 ∧ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
171, 14, 16syl2anc 583 1 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185  cmin 11520  0cn0 12553  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  stoweidlem24  45945  stoweidlem25  45946  stoweidlem45  45966
  Copyright terms: Public domain W3C validator