Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem12 | Structured version Visualization version GIF version |
Description: Lemma for stoweid 43279. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem12.1 | ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
stoweidlem12.2 | ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
stoweidlem12.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
stoweidlem12.4 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
Ref | Expression |
---|---|
stoweidlem12 | ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) | |
2 | 1red 10834 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 ∈ ℝ) | |
3 | stoweidlem12.2 | . . . . . 6 ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) | |
4 | 3 | ffvelrnda 6904 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑃‘𝑡) ∈ ℝ) |
5 | stoweidlem12.3 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
6 | 5 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑁 ∈ ℕ0) |
7 | 4, 6 | reexpcld 13733 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑃‘𝑡)↑𝑁) ∈ ℝ) |
8 | 2, 7 | resubcld 11260 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (1 − ((𝑃‘𝑡)↑𝑁)) ∈ ℝ) |
9 | stoweidlem12.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
10 | 9, 5 | jca 515 | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
11 | 10 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
12 | nn0expcl 13649 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾↑𝑁) ∈ ℕ0) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐾↑𝑁) ∈ ℕ0) |
14 | 8, 13 | reexpcld 13733 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁)) ∈ ℝ) |
15 | stoweidlem12.1 | . . 3 ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) | |
16 | 15 | fvmpt2 6829 | . 2 ⊢ ((𝑡 ∈ 𝑇 ∧ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁)) ∈ ℝ) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
17 | 1, 14, 16 | syl2anc 587 | 1 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ↦ cmpt 5135 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 1c1 10730 − cmin 11062 ℕ0cn0 12090 ↑cexp 13635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-exp 13636 |
This theorem is referenced by: stoweidlem24 43240 stoweidlem25 43241 stoweidlem45 43261 |
Copyright terms: Public domain | W3C validator |