Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem25 Structured version   Visualization version   GIF version

Theorem stoweidlem25 42317
Description: This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem25.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem25.2 (𝜑𝑁 ∈ ℕ)
stoweidlem25.3 (𝜑𝐾 ∈ ℕ)
stoweidlem25.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem25.6 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem25.7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem25.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem25.9 (𝜑𝐸 ∈ ℝ+)
stoweidlem25.11 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
Assertion
Ref Expression
stoweidlem25 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝑈(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem25
StepHypRef Expression
1 eldifi 4105 . . 3 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
2 stoweidlem25.1 . . . . 5 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
3 stoweidlem25.6 . . . . 5 (𝜑𝑃:𝑇⟶ℝ)
4 stoweidlem25.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11958 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 stoweidlem25.3 . . . . . 6 (𝜑𝐾 ∈ ℕ)
76nnnn0d 11958 . . . . 5 (𝜑𝐾 ∈ ℕ0)
82, 3, 5, 7stoweidlem12 42304 . . . 4 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
9 1red 10644 . . . . . 6 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
103ffvelrnda 6853 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
115adantr 483 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
1210, 11reexpcld 13530 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
139, 12resubcld 11070 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
146, 5nnexpcld 13609 . . . . . . 7 (𝜑 → (𝐾𝑁) ∈ ℕ)
1514nnnn0d 11958 . . . . . 6 (𝜑 → (𝐾𝑁) ∈ ℕ0)
1615adantr 483 . . . . 5 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
1713, 16reexpcld 13530 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
188, 17eqeltrd 2915 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) ∈ ℝ)
191, 18sylan2 594 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ∈ ℝ)
206nnred 11655 . . . . . 6 (𝜑𝐾 ∈ ℝ)
21 stoweidlem25.4 . . . . . . 7 (𝜑𝐷 ∈ ℝ+)
2221rpred 12434 . . . . . 6 (𝜑𝐷 ∈ ℝ)
2320, 22remulcld 10673 . . . . 5 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
2423, 5reexpcld 13530 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ)
256nncnd 11656 . . . . . 6 (𝜑𝐾 ∈ ℂ)
266nnne0d 11690 . . . . . 6 (𝜑𝐾 ≠ 0)
2721rpcnne0d 12443 . . . . . 6 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 mulne0 11284 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0)
2925, 26, 27, 28syl21anc 835 . . . . 5 (𝜑 → (𝐾 · 𝐷) ≠ 0)
3021rpcnd 12436 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3125, 30mulcld 10663 . . . . . 6 (𝜑 → (𝐾 · 𝐷) ∈ ℂ)
32 expne0 13463 . . . . . 6 (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3331, 4, 32syl2anc 586 . . . . 5 (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3429, 33mpbird 259 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0)
3524, 34rereccld 11469 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
3635adantr 483 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
37 stoweidlem25.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
3837rpred 12434 . . 3 (𝜑𝐸 ∈ ℝ)
3938adantr 483 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
401, 8sylan2 594 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
414adantr 483 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑁 ∈ ℕ)
426adantr 483 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐾 ∈ ℕ)
4321adantr 483 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ+)
443adantr 483 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
451adantl 484 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡𝑇)
4644, 45ffvelrnd 6854 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ)
47 0red 10646 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ∈ ℝ)
4822adantr 483 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ)
4921rpgt0d 12437 . . . . . . 7 (𝜑 → 0 < 𝐷)
5049adantr 483 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < 𝐷)
51 stoweidlem25.8 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5251r19.21bi 3210 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ≤ (𝑃𝑡))
5347, 48, 46, 50, 52ltletrd 10802 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
5446, 53elrpd 12431 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ+)
55 stoweidlem25.7 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5655adantr 483 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
57 rsp 3207 . . . . . 6 (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
5856, 45, 57sylc 65 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5958simpld 497 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ≤ (𝑃𝑡))
6058simprd 498 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ≤ 1)
6141, 42, 43, 54, 59, 60, 52stoweidlem1 42293 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
6240, 61eqbrtrd 5090 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
63 stoweidlem25.11 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6463adantr 483 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6519, 36, 39, 62, 64lelttrd 10800 1 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  cdif 3935   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  +crp 12392  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433
This theorem is referenced by:  stoweidlem45  42337
  Copyright terms: Public domain W3C validator