Proof of Theorem stoweidlem25
| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4131 |
. . 3
⊢ (𝑡 ∈ (𝑇 ∖ 𝑈) → 𝑡 ∈ 𝑇) |
| 2 | | stoweidlem25.1 |
. . . . 5
⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
| 3 | | stoweidlem25.6 |
. . . . 5
⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
| 4 | | stoweidlem25.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 5 | 4 | nnnn0d 12587 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 6 | | stoweidlem25.3 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 7 | 6 | nnnn0d 12587 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 8 | 2, 3, 5, 7 | stoweidlem12 46027 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
| 9 | | 1red 11262 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 ∈ ℝ) |
| 10 | 3 | ffvelcdmda 7104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑃‘𝑡) ∈ ℝ) |
| 11 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑁 ∈
ℕ0) |
| 12 | 10, 11 | reexpcld 14203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑃‘𝑡)↑𝑁) ∈ ℝ) |
| 13 | 9, 12 | resubcld 11691 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (1 − ((𝑃‘𝑡)↑𝑁)) ∈ ℝ) |
| 14 | 6, 5 | nnexpcld 14284 |
. . . . . . 7
⊢ (𝜑 → (𝐾↑𝑁) ∈ ℕ) |
| 15 | 14 | nnnn0d 12587 |
. . . . . 6
⊢ (𝜑 → (𝐾↑𝑁) ∈
ℕ0) |
| 16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐾↑𝑁) ∈
ℕ0) |
| 17 | 13, 16 | reexpcld 14203 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁)) ∈ ℝ) |
| 18 | 8, 17 | eqeltrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) ∈ ℝ) |
| 19 | 1, 18 | sylan2 593 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) ∈ ℝ) |
| 20 | 6 | nnred 12281 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 21 | | stoweidlem25.4 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
| 22 | 21 | rpred 13077 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | 20, 22 | remulcld 11291 |
. . . . 5
⊢ (𝜑 → (𝐾 · 𝐷) ∈ ℝ) |
| 24 | 23, 5 | reexpcld 14203 |
. . . 4
⊢ (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ) |
| 25 | 6 | nncnd 12282 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 26 | 6 | nnne0d 12316 |
. . . . . 6
⊢ (𝜑 → 𝐾 ≠ 0) |
| 27 | 21 | rpcnne0d 13086 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) |
| 28 | | mulne0 11905 |
. . . . . 6
⊢ (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0) |
| 29 | 25, 26, 27, 28 | syl21anc 838 |
. . . . 5
⊢ (𝜑 → (𝐾 · 𝐷) ≠ 0) |
| 30 | 21 | rpcnd 13079 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 31 | 25, 30 | mulcld 11281 |
. . . . . 6
⊢ (𝜑 → (𝐾 · 𝐷) ∈ ℂ) |
| 32 | | expne0 14134 |
. . . . . 6
⊢ (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0)) |
| 33 | 31, 4, 32 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0)) |
| 34 | 29, 33 | mpbird 257 |
. . . 4
⊢ (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0) |
| 35 | 24, 34 | rereccld 12094 |
. . 3
⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ) |
| 36 | 35 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ) |
| 37 | | stoweidlem25.9 |
. . . 4
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 38 | 37 | rpred 13077 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 39 | 38 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐸 ∈ ℝ) |
| 40 | 1, 8 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
| 41 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑁 ∈ ℕ) |
| 42 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐾 ∈ ℕ) |
| 43 | 21 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐷 ∈
ℝ+) |
| 44 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑃:𝑇⟶ℝ) |
| 45 | 1 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑡 ∈ 𝑇) |
| 46 | 44, 45 | ffvelcdmd 7105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑡) ∈ ℝ) |
| 47 | | 0red 11264 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 ∈ ℝ) |
| 48 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐷 ∈ ℝ) |
| 49 | 21 | rpgt0d 13080 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝐷) |
| 50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 < 𝐷) |
| 51 | | stoweidlem25.8 |
. . . . . . 7
⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) |
| 52 | 51 | r19.21bi 3251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐷 ≤ (𝑃‘𝑡)) |
| 53 | 47, 48, 46, 50, 52 | ltletrd 11421 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 < (𝑃‘𝑡)) |
| 54 | 46, 53 | elrpd 13074 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑡) ∈
ℝ+) |
| 55 | | stoweidlem25.7 |
. . . . . . 7
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
| 56 | 55 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
| 57 | | rsp 3247 |
. . . . . 6
⊢
(∀𝑡 ∈
𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1) → (𝑡 ∈ 𝑇 → (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1))) |
| 58 | 56, 45, 57 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
| 59 | 58 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 ≤ (𝑃‘𝑡)) |
| 60 | 58 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑡) ≤ 1) |
| 61 | 41, 42, 43, 54, 59, 60, 52 | stoweidlem1 46016 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) |
| 62 | 40, 61 | eqbrtrd 5165 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) |
| 63 | | stoweidlem25.11 |
. . 3
⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) |
| 64 | 63 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) |
| 65 | 19, 36, 39, 62, 64 | lelttrd 11419 |
1
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) < 𝐸) |