Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem25 Structured version   Visualization version   GIF version

Theorem stoweidlem25 46016
Description: This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem25.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem25.2 (𝜑𝑁 ∈ ℕ)
stoweidlem25.3 (𝜑𝐾 ∈ ℕ)
stoweidlem25.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem25.6 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem25.7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem25.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem25.9 (𝜑𝐸 ∈ ℝ+)
stoweidlem25.11 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
Assertion
Ref Expression
stoweidlem25 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝑈(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem25
StepHypRef Expression
1 eldifi 4090 . . 3 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
2 stoweidlem25.1 . . . . 5 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
3 stoweidlem25.6 . . . . 5 (𝜑𝑃:𝑇⟶ℝ)
4 stoweidlem25.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12479 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 stoweidlem25.3 . . . . . 6 (𝜑𝐾 ∈ ℕ)
76nnnn0d 12479 . . . . 5 (𝜑𝐾 ∈ ℕ0)
82, 3, 5, 7stoweidlem12 46003 . . . 4 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
9 1red 11151 . . . . . 6 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
103ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
115adantr 480 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
1210, 11reexpcld 14104 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
139, 12resubcld 11582 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
146, 5nnexpcld 14186 . . . . . . 7 (𝜑 → (𝐾𝑁) ∈ ℕ)
1514nnnn0d 12479 . . . . . 6 (𝜑 → (𝐾𝑁) ∈ ℕ0)
1615adantr 480 . . . . 5 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
1713, 16reexpcld 14104 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
188, 17eqeltrd 2828 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) ∈ ℝ)
191, 18sylan2 593 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ∈ ℝ)
206nnred 12177 . . . . . 6 (𝜑𝐾 ∈ ℝ)
21 stoweidlem25.4 . . . . . . 7 (𝜑𝐷 ∈ ℝ+)
2221rpred 12971 . . . . . 6 (𝜑𝐷 ∈ ℝ)
2320, 22remulcld 11180 . . . . 5 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
2423, 5reexpcld 14104 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ)
256nncnd 12178 . . . . . 6 (𝜑𝐾 ∈ ℂ)
266nnne0d 12212 . . . . . 6 (𝜑𝐾 ≠ 0)
2721rpcnne0d 12980 . . . . . 6 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 mulne0 11796 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0)
2925, 26, 27, 28syl21anc 837 . . . . 5 (𝜑 → (𝐾 · 𝐷) ≠ 0)
3021rpcnd 12973 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3125, 30mulcld 11170 . . . . . 6 (𝜑 → (𝐾 · 𝐷) ∈ ℂ)
32 expne0 14034 . . . . . 6 (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3331, 4, 32syl2anc 584 . . . . 5 (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3429, 33mpbird 257 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0)
3524, 34rereccld 11985 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
3635adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
37 stoweidlem25.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
3837rpred 12971 . . 3 (𝜑𝐸 ∈ ℝ)
3938adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
401, 8sylan2 593 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
414adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑁 ∈ ℕ)
426adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐾 ∈ ℕ)
4321adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ+)
443adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
451adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡𝑇)
4644, 45ffvelcdmd 7039 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ)
47 0red 11153 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ∈ ℝ)
4822adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ)
4921rpgt0d 12974 . . . . . . 7 (𝜑 → 0 < 𝐷)
5049adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < 𝐷)
51 stoweidlem25.8 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5251r19.21bi 3227 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ≤ (𝑃𝑡))
5347, 48, 46, 50, 52ltletrd 11310 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
5446, 53elrpd 12968 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ+)
55 stoweidlem25.7 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5655adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
57 rsp 3223 . . . . . 6 (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
5856, 45, 57sylc 65 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5958simpld 494 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ≤ (𝑃𝑡))
6058simprd 495 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ≤ 1)
6141, 42, 43, 54, 59, 60, 52stoweidlem1 45992 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
6240, 61eqbrtrd 5124 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
63 stoweidlem25.11 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6463adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6519, 36, 39, 62, 64lelttrd 11308 1 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3908   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  +crp 12927  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003
This theorem is referenced by:  stoweidlem45  46036
  Copyright terms: Public domain W3C validator