Proof of Theorem stoweidlem25
Step | Hyp | Ref
| Expression |
1 | | eldifi 4057 |
. . 3
⊢ (𝑡 ∈ (𝑇 ∖ 𝑈) → 𝑡 ∈ 𝑇) |
2 | | stoweidlem25.1 |
. . . . 5
⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
3 | | stoweidlem25.6 |
. . . . 5
⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
4 | | stoweidlem25.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | 4 | nnnn0d 12223 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
6 | | stoweidlem25.3 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
7 | 6 | nnnn0d 12223 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
8 | 2, 3, 5, 7 | stoweidlem12 43443 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
9 | | 1red 10907 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 ∈ ℝ) |
10 | 3 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑃‘𝑡) ∈ ℝ) |
11 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑁 ∈
ℕ0) |
12 | 10, 11 | reexpcld 13809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑃‘𝑡)↑𝑁) ∈ ℝ) |
13 | 9, 12 | resubcld 11333 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (1 − ((𝑃‘𝑡)↑𝑁)) ∈ ℝ) |
14 | 6, 5 | nnexpcld 13888 |
. . . . . . 7
⊢ (𝜑 → (𝐾↑𝑁) ∈ ℕ) |
15 | 14 | nnnn0d 12223 |
. . . . . 6
⊢ (𝜑 → (𝐾↑𝑁) ∈
ℕ0) |
16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐾↑𝑁) ∈
ℕ0) |
17 | 13, 16 | reexpcld 13809 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁)) ∈ ℝ) |
18 | 8, 17 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) ∈ ℝ) |
19 | 1, 18 | sylan2 592 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) ∈ ℝ) |
20 | 6 | nnred 11918 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℝ) |
21 | | stoweidlem25.4 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
22 | 21 | rpred 12701 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ ℝ) |
23 | 20, 22 | remulcld 10936 |
. . . . 5
⊢ (𝜑 → (𝐾 · 𝐷) ∈ ℝ) |
24 | 23, 5 | reexpcld 13809 |
. . . 4
⊢ (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ) |
25 | 6 | nncnd 11919 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℂ) |
26 | 6 | nnne0d 11953 |
. . . . . 6
⊢ (𝜑 → 𝐾 ≠ 0) |
27 | 21 | rpcnne0d 12710 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) |
28 | | mulne0 11547 |
. . . . . 6
⊢ (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0) |
29 | 25, 26, 27, 28 | syl21anc 834 |
. . . . 5
⊢ (𝜑 → (𝐾 · 𝐷) ≠ 0) |
30 | 21 | rpcnd 12703 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ ℂ) |
31 | 25, 30 | mulcld 10926 |
. . . . . 6
⊢ (𝜑 → (𝐾 · 𝐷) ∈ ℂ) |
32 | | expne0 13742 |
. . . . . 6
⊢ (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0)) |
33 | 31, 4, 32 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0)) |
34 | 29, 33 | mpbird 256 |
. . . 4
⊢ (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0) |
35 | 24, 34 | rereccld 11732 |
. . 3
⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ) |
36 | 35 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ) |
37 | | stoweidlem25.9 |
. . . 4
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
38 | 37 | rpred 12701 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ℝ) |
39 | 38 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐸 ∈ ℝ) |
40 | 1, 8 | sylan2 592 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) |
41 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑁 ∈ ℕ) |
42 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐾 ∈ ℕ) |
43 | 21 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐷 ∈
ℝ+) |
44 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑃:𝑇⟶ℝ) |
45 | 1 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑡 ∈ 𝑇) |
46 | 44, 45 | ffvelrnd 6944 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑡) ∈ ℝ) |
47 | | 0red 10909 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 ∈ ℝ) |
48 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐷 ∈ ℝ) |
49 | 21 | rpgt0d 12704 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝐷) |
50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 < 𝐷) |
51 | | stoweidlem25.8 |
. . . . . . 7
⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) |
52 | 51 | r19.21bi 3132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝐷 ≤ (𝑃‘𝑡)) |
53 | 47, 48, 46, 50, 52 | ltletrd 11065 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 < (𝑃‘𝑡)) |
54 | 46, 53 | elrpd 12698 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑡) ∈
ℝ+) |
55 | | stoweidlem25.7 |
. . . . . . 7
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
56 | 55 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
57 | | rsp 3129 |
. . . . . 6
⊢
(∀𝑡 ∈
𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1) → (𝑡 ∈ 𝑇 → (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1))) |
58 | 56, 45, 57 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
59 | 58 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 0 ≤ (𝑃‘𝑡)) |
60 | 58 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑡) ≤ 1) |
61 | 41, 42, 43, 54, 59, 60, 52 | stoweidlem1 43432 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) |
62 | 40, 61 | eqbrtrd 5092 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) |
63 | | stoweidlem25.11 |
. . 3
⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) |
64 | 63 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) |
65 | 19, 36, 39, 62, 64 | lelttrd 11063 |
1
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) < 𝐸) |