Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem25 Structured version   Visualization version   GIF version

Theorem stoweidlem25 46030
Description: This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem25.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem25.2 (𝜑𝑁 ∈ ℕ)
stoweidlem25.3 (𝜑𝐾 ∈ ℕ)
stoweidlem25.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem25.6 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem25.7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem25.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem25.9 (𝜑𝐸 ∈ ℝ+)
stoweidlem25.11 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
Assertion
Ref Expression
stoweidlem25 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝑈(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem25
StepHypRef Expression
1 eldifi 4097 . . 3 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
2 stoweidlem25.1 . . . . 5 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
3 stoweidlem25.6 . . . . 5 (𝜑𝑃:𝑇⟶ℝ)
4 stoweidlem25.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12510 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 stoweidlem25.3 . . . . . 6 (𝜑𝐾 ∈ ℕ)
76nnnn0d 12510 . . . . 5 (𝜑𝐾 ∈ ℕ0)
82, 3, 5, 7stoweidlem12 46017 . . . 4 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
9 1red 11182 . . . . . 6 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
103ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
115adantr 480 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
1210, 11reexpcld 14135 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
139, 12resubcld 11613 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
146, 5nnexpcld 14217 . . . . . . 7 (𝜑 → (𝐾𝑁) ∈ ℕ)
1514nnnn0d 12510 . . . . . 6 (𝜑 → (𝐾𝑁) ∈ ℕ0)
1615adantr 480 . . . . 5 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
1713, 16reexpcld 14135 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
188, 17eqeltrd 2829 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) ∈ ℝ)
191, 18sylan2 593 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ∈ ℝ)
206nnred 12208 . . . . . 6 (𝜑𝐾 ∈ ℝ)
21 stoweidlem25.4 . . . . . . 7 (𝜑𝐷 ∈ ℝ+)
2221rpred 13002 . . . . . 6 (𝜑𝐷 ∈ ℝ)
2320, 22remulcld 11211 . . . . 5 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
2423, 5reexpcld 14135 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ)
256nncnd 12209 . . . . . 6 (𝜑𝐾 ∈ ℂ)
266nnne0d 12243 . . . . . 6 (𝜑𝐾 ≠ 0)
2721rpcnne0d 13011 . . . . . 6 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 mulne0 11827 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0)
2925, 26, 27, 28syl21anc 837 . . . . 5 (𝜑 → (𝐾 · 𝐷) ≠ 0)
3021rpcnd 13004 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3125, 30mulcld 11201 . . . . . 6 (𝜑 → (𝐾 · 𝐷) ∈ ℂ)
32 expne0 14065 . . . . . 6 (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3331, 4, 32syl2anc 584 . . . . 5 (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3429, 33mpbird 257 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0)
3524, 34rereccld 12016 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
3635adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
37 stoweidlem25.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
3837rpred 13002 . . 3 (𝜑𝐸 ∈ ℝ)
3938adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
401, 8sylan2 593 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
414adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑁 ∈ ℕ)
426adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐾 ∈ ℕ)
4321adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ+)
443adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
451adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡𝑇)
4644, 45ffvelcdmd 7060 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ)
47 0red 11184 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ∈ ℝ)
4822adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ)
4921rpgt0d 13005 . . . . . . 7 (𝜑 → 0 < 𝐷)
5049adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < 𝐷)
51 stoweidlem25.8 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5251r19.21bi 3230 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ≤ (𝑃𝑡))
5347, 48, 46, 50, 52ltletrd 11341 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
5446, 53elrpd 12999 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ+)
55 stoweidlem25.7 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5655adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
57 rsp 3226 . . . . . 6 (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
5856, 45, 57sylc 65 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5958simpld 494 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ≤ (𝑃𝑡))
6058simprd 495 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ≤ 1)
6141, 42, 43, 54, 59, 60, 52stoweidlem1 46006 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
6240, 61eqbrtrd 5132 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
63 stoweidlem25.11 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6463adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6519, 36, 39, 62, 64lelttrd 11339 1 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  +crp 12958  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034
This theorem is referenced by:  stoweidlem45  46050
  Copyright terms: Public domain W3C validator