Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem25 Structured version   Visualization version   GIF version

Theorem stoweidlem25 46040
Description: This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem25.1 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem25.2 (𝜑𝑁 ∈ ℕ)
stoweidlem25.3 (𝜑𝐾 ∈ ℕ)
stoweidlem25.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem25.6 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem25.7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem25.8 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem25.9 (𝜑𝐸 ∈ ℝ+)
stoweidlem25.11 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
Assertion
Ref Expression
stoweidlem25 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝑈(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem stoweidlem25
StepHypRef Expression
1 eldifi 4131 . . 3 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
2 stoweidlem25.1 . . . . 5 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
3 stoweidlem25.6 . . . . 5 (𝜑𝑃:𝑇⟶ℝ)
4 stoweidlem25.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12587 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 stoweidlem25.3 . . . . . 6 (𝜑𝐾 ∈ ℕ)
76nnnn0d 12587 . . . . 5 (𝜑𝐾 ∈ ℕ0)
82, 3, 5, 7stoweidlem12 46027 . . . 4 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
9 1red 11262 . . . . . 6 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
103ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
115adantr 480 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
1210, 11reexpcld 14203 . . . . . 6 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
139, 12resubcld 11691 . . . . 5 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
146, 5nnexpcld 14284 . . . . . . 7 (𝜑 → (𝐾𝑁) ∈ ℕ)
1514nnnn0d 12587 . . . . . 6 (𝜑 → (𝐾𝑁) ∈ ℕ0)
1615adantr 480 . . . . 5 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
1713, 16reexpcld 14203 . . . 4 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
188, 17eqeltrd 2841 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) ∈ ℝ)
191, 18sylan2 593 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ∈ ℝ)
206nnred 12281 . . . . . 6 (𝜑𝐾 ∈ ℝ)
21 stoweidlem25.4 . . . . . . 7 (𝜑𝐷 ∈ ℝ+)
2221rpred 13077 . . . . . 6 (𝜑𝐷 ∈ ℝ)
2320, 22remulcld 11291 . . . . 5 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
2423, 5reexpcld 14203 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ∈ ℝ)
256nncnd 12282 . . . . . 6 (𝜑𝐾 ∈ ℂ)
266nnne0d 12316 . . . . . 6 (𝜑𝐾 ≠ 0)
2721rpcnne0d 13086 . . . . . 6 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 mulne0 11905 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐾 · 𝐷) ≠ 0)
2925, 26, 27, 28syl21anc 838 . . . . 5 (𝜑 → (𝐾 · 𝐷) ≠ 0)
3021rpcnd 13079 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3125, 30mulcld 11281 . . . . . 6 (𝜑 → (𝐾 · 𝐷) ∈ ℂ)
32 expne0 14134 . . . . . 6 (((𝐾 · 𝐷) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3331, 4, 32syl2anc 584 . . . . 5 (𝜑 → (((𝐾 · 𝐷)↑𝑁) ≠ 0 ↔ (𝐾 · 𝐷) ≠ 0))
3429, 33mpbird 257 . . . 4 (𝜑 → ((𝐾 · 𝐷)↑𝑁) ≠ 0)
3524, 34rereccld 12094 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
3635adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) ∈ ℝ)
37 stoweidlem25.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
3837rpred 13077 . . 3 (𝜑𝐸 ∈ ℝ)
3938adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
401, 8sylan2 593 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
414adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑁 ∈ ℕ)
426adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐾 ∈ ℕ)
4321adantr 480 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ+)
443adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
451adantl 481 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡𝑇)
4644, 45ffvelcdmd 7105 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ)
47 0red 11264 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ∈ ℝ)
4822adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ∈ ℝ)
4921rpgt0d 13080 . . . . . . 7 (𝜑 → 0 < 𝐷)
5049adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < 𝐷)
51 stoweidlem25.8 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5251r19.21bi 3251 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐷 ≤ (𝑃𝑡))
5347, 48, 46, 50, 52ltletrd 11421 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 < (𝑃𝑡))
5446, 53elrpd 13074 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ∈ ℝ+)
55 stoweidlem25.7 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5655adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
57 rsp 3247 . . . . . 6 (∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) → (𝑡𝑇 → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1)))
5856, 45, 57sylc 65 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5958simpld 494 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → 0 ≤ (𝑃𝑡))
6058simprd 495 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑃𝑡) ≤ 1)
6141, 42, 43, 54, 59, 60, 52stoweidlem1 46016 . . 3 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
6240, 61eqbrtrd 5165 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) ≤ (1 / ((𝐾 · 𝐷)↑𝑁)))
63 stoweidlem25.11 . . 3 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6463adantr 480 . 2 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
6519, 36, 39, 62, 64lelttrd 11419 1 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  cdif 3948   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  +crp 13034  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103
This theorem is referenced by:  stoweidlem45  46060
  Copyright terms: Public domain W3C validator