MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsq2 Structured version   Visualization version   GIF version

Theorem subsq2 14227
Description: Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))))

Proof of Theorem subsq2
StepHypRef Expression
1 2cn 12313 . . . . . . . 8 2 ∈ ℂ
2 mulcl 11211 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
31, 2mpan 690 . . . . . . 7 (𝐵 ∈ ℂ → (2 · 𝐵) ∈ ℂ)
43adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
5 subadd23 11492 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (2 · 𝐵) ∈ ℂ) → ((𝐴𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵)))
64, 5mpd3an3 1464 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵)))
7 2txmxeqx 12378 . . . . . . 7 (𝐵 ∈ ℂ → ((2 · 𝐵) − 𝐵) = 𝐵)
87adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) − 𝐵) = 𝐵)
98oveq2d 7419 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + ((2 · 𝐵) − 𝐵)) = (𝐴 + 𝐵))
106, 9eqtrd 2770 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + (2 · 𝐵)) = (𝐴 + 𝐵))
1110oveq1d 7418 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝐵) + (2 · 𝐵)) · (𝐴𝐵)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
12 subcl 11479 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
1312, 4, 12adddird 11258 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝐵) + (2 · 𝐵)) · (𝐴𝐵)) = (((𝐴𝐵) · (𝐴𝐵)) + ((2 · 𝐵) · (𝐴𝐵))))
1411, 13eqtr3d 2772 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴𝐵)) = (((𝐴𝐵) · (𝐴𝐵)) + ((2 · 𝐵) · (𝐴𝐵))))
15 subsq 14226 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
16 sqval 14130 . . . 4 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)↑2) = ((𝐴𝐵) · (𝐴𝐵)))
1712, 16syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = ((𝐴𝐵) · (𝐴𝐵)))
1817oveq1d 7418 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))) = (((𝐴𝐵) · (𝐴𝐵)) + ((2 · 𝐵) · (𝐴𝐵))))
1914, 15, 183eqtr4d 2780 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7403  cc 11125   + caddc 11130   · cmul 11132  cmin 11464  2c2 12293  cexp 14077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-seq 14018  df-exp 14078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator