Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subsq2 | Structured version Visualization version GIF version |
Description: Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.) |
Ref | Expression |
---|---|
subsq2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12150 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
2 | mulcl 11057 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) | |
3 | 1, 2 | mpan 687 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (2 · 𝐵) ∈ ℂ) |
4 | 3 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) |
5 | subadd23 11335 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (2 · 𝐵) ∈ ℂ) → ((𝐴 − 𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵))) | |
6 | 4, 5 | mpd3an3 1461 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵))) |
7 | 2txmxeqx 12215 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((2 · 𝐵) − 𝐵) = 𝐵) | |
8 | 7 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) − 𝐵) = 𝐵) |
9 | 8 | oveq2d 7354 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + ((2 · 𝐵) − 𝐵)) = (𝐴 + 𝐵)) |
10 | 6, 9 | eqtrd 2776 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (2 · 𝐵)) = (𝐴 + 𝐵)) |
11 | 10 | oveq1d 7353 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 𝐵) + (2 · 𝐵)) · (𝐴 − 𝐵)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
12 | subcl 11322 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
13 | 12, 4, 12 | adddird 11102 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 𝐵) + (2 · 𝐵)) · (𝐴 − 𝐵)) = (((𝐴 − 𝐵) · (𝐴 − 𝐵)) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
14 | 11, 13 | eqtr3d 2778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = (((𝐴 − 𝐵) · (𝐴 − 𝐵)) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
15 | subsq 14028 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
16 | sqval 13937 | . . . 4 ⊢ ((𝐴 − 𝐵) ∈ ℂ → ((𝐴 − 𝐵)↑2) = ((𝐴 − 𝐵) · (𝐴 − 𝐵))) | |
17 | 12, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = ((𝐴 − 𝐵) · (𝐴 − 𝐵))) |
18 | 17 | oveq1d 7353 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵))) = (((𝐴 − 𝐵) · (𝐴 − 𝐵)) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
19 | 14, 15, 18 | 3eqtr4d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7338 ℂcc 10971 + caddc 10976 · cmul 10978 − cmin 11307 2c2 12130 ↑cexp 13884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-n0 12336 df-z 12422 df-uz 12685 df-seq 13824 df-exp 13885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |