| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subsq2 | Structured version Visualization version GIF version | ||
| Description: Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.) |
| Ref | Expression |
|---|---|
| subsq2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12313 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 2 | mulcl 11211 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (2 · 𝐵) ∈ ℂ) |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) |
| 5 | subadd23 11492 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (2 · 𝐵) ∈ ℂ) → ((𝐴 − 𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵))) | |
| 6 | 4, 5 | mpd3an3 1464 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵))) |
| 7 | 2txmxeqx 12378 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((2 · 𝐵) − 𝐵) = 𝐵) | |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) − 𝐵) = 𝐵) |
| 9 | 8 | oveq2d 7419 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + ((2 · 𝐵) − 𝐵)) = (𝐴 + 𝐵)) |
| 10 | 6, 9 | eqtrd 2770 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (2 · 𝐵)) = (𝐴 + 𝐵)) |
| 11 | 10 | oveq1d 7418 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 𝐵) + (2 · 𝐵)) · (𝐴 − 𝐵)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
| 12 | subcl 11479 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 13 | 12, 4, 12 | adddird 11258 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 𝐵) + (2 · 𝐵)) · (𝐴 − 𝐵)) = (((𝐴 − 𝐵) · (𝐴 − 𝐵)) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
| 14 | 11, 13 | eqtr3d 2772 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = (((𝐴 − 𝐵) · (𝐴 − 𝐵)) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
| 15 | subsq 14226 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
| 16 | sqval 14130 | . . . 4 ⊢ ((𝐴 − 𝐵) ∈ ℂ → ((𝐴 − 𝐵)↑2) = ((𝐴 − 𝐵) · (𝐴 − 𝐵))) | |
| 17 | 12, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = ((𝐴 − 𝐵) · (𝐴 − 𝐵))) |
| 18 | 17 | oveq1d 7418 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵))) = (((𝐴 − 𝐵) · (𝐴 − 𝐵)) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
| 19 | 14, 15, 18 | 3eqtr4d 2780 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 + caddc 11130 · cmul 11132 − cmin 11464 2c2 12293 ↑cexp 14077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-seq 14018 df-exp 14078 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |