![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqval | Structured version Visualization version GIF version |
Description: Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sqval | โข (๐ด โ โ โ (๐ดโ2) = (๐ด ยท ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12281 | . . . 4 โข 2 = (1 + 1) | |
2 | 1 | oveq2i 7424 | . . 3 โข (๐ดโ2) = (๐ดโ(1 + 1)) |
3 | 1nn0 12494 | . . . 4 โข 1 โ โ0 | |
4 | expp1 14040 | . . . 4 โข ((๐ด โ โ โง 1 โ โ0) โ (๐ดโ(1 + 1)) = ((๐ดโ1) ยท ๐ด)) | |
5 | 3, 4 | mpan2 687 | . . 3 โข (๐ด โ โ โ (๐ดโ(1 + 1)) = ((๐ดโ1) ยท ๐ด)) |
6 | 2, 5 | eqtrid 2782 | . 2 โข (๐ด โ โ โ (๐ดโ2) = ((๐ดโ1) ยท ๐ด)) |
7 | exp1 14039 | . . 3 โข (๐ด โ โ โ (๐ดโ1) = ๐ด) | |
8 | 7 | oveq1d 7428 | . 2 โข (๐ด โ โ โ ((๐ดโ1) ยท ๐ด) = (๐ด ยท ๐ด)) |
9 | 6, 8 | eqtrd 2770 | 1 โข (๐ด โ โ โ (๐ดโ2) = (๐ด ยท ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1539 โ wcel 2104 (class class class)co 7413 โcc 11112 1c1 11115 + caddc 11117 ยท cmul 11119 2c2 12273 โ0cn0 12478 โcexp 14033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-n0 12479 df-z 12565 df-uz 12829 df-seq 13973 df-exp 14034 |
This theorem is referenced by: sqneg 14087 sqcl 14089 sqdiv 14092 sqdivid 14093 sqgt0 14097 nnsqcl 14099 qsqcl 14101 sq11 14102 lt2sq 14104 le2sq 14105 sqge0 14107 sqvald 14114 sqvali 14150 nnlesq 14175 sqlecan 14179 subsq 14180 subsq2 14181 binom3 14193 sq01 14194 zesq 14195 discr1 14208 discr 14209 01sqrexlem2 15196 sqreulem 15312 arisum 15812 3lexlogpow2ineq2 41232 itgsinexplem1 44970 |
Copyright terms: Public domain | W3C validator |