![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrunop | Structured version Visualization version GIF version |
Description: The union of two simple graphs (with the same vertex set): If ⟨𝑉, 𝐸⟩ and ⟨𝑉, 𝐹⟩ are simple graphs, then ⟨𝑉, 𝐸 ∪ 𝐹⟩ is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) |
Ref | Expression |
---|---|
usgrun.g | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
usgrun.h | ⊢ (𝜑 → 𝐻 ∈ USGraph) |
usgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
usgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
usgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
usgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
usgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
usgrunop | ⊢ (𝜑 → ⟨𝑉, (𝐸 ∪ 𝐹)⟩ ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USGraph) | |
2 | usgrumgr 29010 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
4 | usgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USGraph) | |
5 | usgrumgr 29010 | . . 3 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ UMGraph) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
7 | usgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | usgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | usgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | usgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | usgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | 3, 6, 7, 8, 9, 10, 11 | umgrunop 28950 | 1 ⊢ (𝜑 → ⟨𝑉, (𝐸 ∪ 𝐹)⟩ ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cun 3937 ∩ cin 3938 ∅c0 4316 ⟨cop 4628 dom cdm 5670 ‘cfv 6541 Vtxcvtx 28825 iEdgciedg 28826 UMGraphcumgr 28910 USGraphcusgr 28978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 df-vtx 28827 df-iedg 28828 df-umgr 28912 df-usgr 28980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |