MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpreccl Structured version   Visualization version   GIF version

Theorem rpreccl 13061
Description: Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
Assertion
Ref Expression
rpreccl (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)

Proof of Theorem rpreccl
StepHypRef Expression
1 1rp 13038 . 2 1 ∈ ℝ+
2 rpdivcl 13060 . 2 ((1 ∈ ℝ+𝐴 ∈ ℝ+) → (1 / 𝐴) ∈ ℝ+)
31, 2mpan 690 1 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  (class class class)co 7431  1c1 11156   / cdiv 11920  +crp 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-rp 13035
This theorem is referenced by:  rpreccld  13087  xlemul1  13332  rpexpcl  14121  rpnnen2lem11  16260  prmreclem6  16959  rpmsubg  21449  lebnumii  24998  nmhmcn  25153  lmnn  25297  advlog  26696  cxprec  26728  dvcxp1  26782  loglesqrt  26804  logrec  26806  rlimcnp  27008  rlimcnp2  27009  rlimcnp3  27010  cxplim  27015  logdifbnd  27037  harmonicbnd4  27054  logfacrlim  27268  dchrmusumlema  27537  mulogsumlem  27575  selberg2lem  27594  pntrsumo1  27609  pntibndlem1  27633  blocnilem  30823  subfacval3  35194  recnnltrp  45388  rpgtrecnn  45391  xrralrecnnle  45394  nnrecrp  45397  sumnnodd  45645  dirkertrigeq  46116  preimageiingt  46735  preimaleiinlt  46736
  Copyright terms: Public domain W3C validator