ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad2 Unicode version

Theorem lgsquad2 15727
Description: Extend lgsquad 15724 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
Assertion
Ref Expression
lgsquad2  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )

Proof of Theorem lgsquad2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2  |-  ( ph  ->  M  e.  NN )
2 lgsquad2.2 . 2  |-  ( ph  ->  -.  2  ||  M
)
3 lgsquad2.3 . 2  |-  ( ph  ->  N  e.  NN )
4 lgsquad2.4 . 2  |-  ( ph  ->  -.  2  ||  N
)
5 lgsquad2.5 . 2  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
63adantr 276 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  NN )
74adantr 276 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  N )
8 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
9 eldifi 3306 . . . . . 6  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  e.  Prime )
108, 9syl 14 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  Prime )
11 prmnn 12598 . . . . 5  |-  ( m  e.  Prime  ->  m  e.  NN )
1210, 11syl 14 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  NN )
13 eldifsni 3776 . . . . . . . 8  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  =/=  2 )
148, 13syl 14 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  =/=  2
)
1514necomd 2466 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  2  =/=  m
)
1615neneqd 2401 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  =  m )
17 2z 9442 . . . . . . 7  |-  2  e.  ZZ
18 uzid 9704 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
1917, 18ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
20 dvdsprm 12625 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  m  e.  Prime )  ->  (
2  ||  m  <->  2  =  m ) )
2119, 10, 20sylancr 414 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( 2  ||  m 
<->  2  =  m ) )
2216, 21mtbird 677 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  m )
236nnzd 9536 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  ZZ )
2412nnzd 9536 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ZZ )
2523, 24gcdcomd 12461 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  ( m  gcd  N ) )
26 simprr 531 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  gcd  N )  =  1 )
2725, 26eqtrd 2242 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  1 )
28 simprl 529 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  e.  ( Prime  \  { 2 } ) )
298adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
30 eldifi 3306 . . . . . . . 8  |-  ( n  e.  ( Prime  \  {
2 } )  ->  n  e.  Prime )
31 prmrp 12633 . . . . . . . 8  |-  ( ( n  e.  Prime  /\  m  e.  Prime )  ->  (
( n  gcd  m
)  =  1  <->  n  =/=  m ) )
3230, 10, 31syl2anr 290 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  <-> 
n  =/=  m ) )
3332biimpd 144 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  ->  n  =/=  m
) )
3433impr 379 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  =/=  m
)
35 lgsquad 15724 . . . . 5  |-  ( ( n  e.  ( Prime  \  { 2 } )  /\  m  e.  ( Prime  \  { 2 } )  /\  n  =/=  m )  ->  (
( n  /L
m )  x.  (
m  /L n ) )  =  (
-u 1 ^ (
( ( n  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) ) )
3628, 29, 34, 35syl3anc 1252 . . . 4  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  ( ( n  /L m )  x.  ( m  /L n ) )  =  ( -u 1 ^ ( ( ( n  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
37 biid 171 . . . 4  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  m ) )  =  1  -> 
( ( x  /L m )  x.  ( m  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  m ) )  =  1  ->  ( (
x  /L m )  x.  ( m  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( m  -  1 )  / 
2 ) ) ) ) )
386, 7, 12, 22, 27, 36, 37lgsquad2lem2 15726 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  /L m )  x.  ( m  /L N ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
39 lgscl 15658 . . . . 5  |-  ( ( m  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  /L
N )  e.  ZZ )
4024, 23, 39syl2anc 411 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  /L N )  e.  ZZ )
41 lgscl 15658 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  /L
m )  e.  ZZ )
4223, 24, 41syl2anc 411 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  /L m )  e.  ZZ )
43 zcn 9419 . . . . 5  |-  ( ( m  /L N )  e.  ZZ  ->  ( m  /L N )  e.  CC )
44 zcn 9419 . . . . 5  |-  ( ( N  /L m )  e.  ZZ  ->  ( N  /L m )  e.  CC )
45 mulcom 8096 . . . . 5  |-  ( ( ( m  /L
N )  e.  CC  /\  ( N  /L
m )  e.  CC )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4643, 44, 45syl2an 289 . . . 4  |-  ( ( ( m  /L
N )  e.  ZZ  /\  ( N  /L
m )  e.  ZZ )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4740, 42, 46syl2anc 411 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4812nncnd 9092 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  CC )
49 ax-1cn 8060 . . . . . . 7  |-  1  e.  CC
50 subcl 8313 . . . . . . 7  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( m  -  1 )  e.  CC )
5148, 49, 50sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  - 
1 )  e.  CC )
5251halfcld 9324 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  -  1 )  / 
2 )  e.  CC )
536nncnd 9092 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  CC )
54 subcl 8313 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
5553, 49, 54sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  - 
1 )  e.  CC )
5655halfcld 9324 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  -  1 )  / 
2 )  e.  CC )
5752, 56mulcomd 8136 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  =  ( ( ( N  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) )
5857oveq2d 5990 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )
5938, 47, 583eqtr4d 2252 . 2  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
60 biid 171 . 2  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  /L N )  x.  ( N  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
611, 2, 3, 4, 5, 59, 60lgsquad2lem2 15726 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180    =/= wne 2380   A.wral 2488    \ cdif 3174   {csn 3646   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   CCcc 7965   1c1 7968    x. cmul 7972    - cmin 8285   -ucneg 8286    / cdiv 8787   NNcn 9078   2c2 9129   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172   ^cexp 10727    || cdvds 12264    gcd cgcd 12440   Primecprime 12595    /Lclgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-tpos 6361  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-ec 6652  df-qs 6656  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-igsum 13258  df-topgen 13259  df-iimas 13301  df-qus 13302  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-submnd 13459  df-grp 13502  df-minusg 13503  df-sbg 13504  df-mulg 13623  df-subg 13673  df-nsg 13674  df-eqg 13675  df-ghm 13744  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-unit 14019  df-invr 14050  df-dvr 14061  df-rhm 14081  df-nzr 14109  df-subrg 14148  df-domn 14188  df-idom 14189  df-lmod 14218  df-lssm 14282  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-rsp 14399  df-2idl 14429  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520  df-zrh 14543  df-zn 14545  df-lgs 15642
This theorem is referenced by:  lgsquad3  15728
  Copyright terms: Public domain W3C validator