ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad2 Unicode version

Theorem lgsquad2 15334
Description: Extend lgsquad 15331 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
Assertion
Ref Expression
lgsquad2  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )

Proof of Theorem lgsquad2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2  |-  ( ph  ->  M  e.  NN )
2 lgsquad2.2 . 2  |-  ( ph  ->  -.  2  ||  M
)
3 lgsquad2.3 . 2  |-  ( ph  ->  N  e.  NN )
4 lgsquad2.4 . 2  |-  ( ph  ->  -.  2  ||  N
)
5 lgsquad2.5 . 2  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
63adantr 276 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  NN )
74adantr 276 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  N )
8 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
9 eldifi 3286 . . . . . 6  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  e.  Prime )
108, 9syl 14 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  Prime )
11 prmnn 12288 . . . . 5  |-  ( m  e.  Prime  ->  m  e.  NN )
1210, 11syl 14 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  NN )
13 eldifsni 3752 . . . . . . . 8  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  =/=  2 )
148, 13syl 14 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  =/=  2
)
1514necomd 2453 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  2  =/=  m
)
1615neneqd 2388 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  =  m )
17 2z 9356 . . . . . . 7  |-  2  e.  ZZ
18 uzid 9617 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
1917, 18ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
20 dvdsprm 12315 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  m  e.  Prime )  ->  (
2  ||  m  <->  2  =  m ) )
2119, 10, 20sylancr 414 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( 2  ||  m 
<->  2  =  m ) )
2216, 21mtbird 674 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  m )
236nnzd 9449 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  ZZ )
2412nnzd 9449 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ZZ )
2523, 24gcdcomd 12151 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  ( m  gcd  N ) )
26 simprr 531 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  gcd  N )  =  1 )
2725, 26eqtrd 2229 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  1 )
28 simprl 529 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  e.  ( Prime  \  { 2 } ) )
298adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
30 eldifi 3286 . . . . . . . 8  |-  ( n  e.  ( Prime  \  {
2 } )  ->  n  e.  Prime )
31 prmrp 12323 . . . . . . . 8  |-  ( ( n  e.  Prime  /\  m  e.  Prime )  ->  (
( n  gcd  m
)  =  1  <->  n  =/=  m ) )
3230, 10, 31syl2anr 290 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  <-> 
n  =/=  m ) )
3332biimpd 144 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  ->  n  =/=  m
) )
3433impr 379 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  =/=  m
)
35 lgsquad 15331 . . . . 5  |-  ( ( n  e.  ( Prime  \  { 2 } )  /\  m  e.  ( Prime  \  { 2 } )  /\  n  =/=  m )  ->  (
( n  /L
m )  x.  (
m  /L n ) )  =  (
-u 1 ^ (
( ( n  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) ) )
3628, 29, 34, 35syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  ( ( n  /L m )  x.  ( m  /L n ) )  =  ( -u 1 ^ ( ( ( n  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
37 biid 171 . . . 4  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  m ) )  =  1  -> 
( ( x  /L m )  x.  ( m  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  m ) )  =  1  ->  ( (
x  /L m )  x.  ( m  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( m  -  1 )  / 
2 ) ) ) ) )
386, 7, 12, 22, 27, 36, 37lgsquad2lem2 15333 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  /L m )  x.  ( m  /L N ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
39 lgscl 15265 . . . . 5  |-  ( ( m  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  /L
N )  e.  ZZ )
4024, 23, 39syl2anc 411 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  /L N )  e.  ZZ )
41 lgscl 15265 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  /L
m )  e.  ZZ )
4223, 24, 41syl2anc 411 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  /L m )  e.  ZZ )
43 zcn 9333 . . . . 5  |-  ( ( m  /L N )  e.  ZZ  ->  ( m  /L N )  e.  CC )
44 zcn 9333 . . . . 5  |-  ( ( N  /L m )  e.  ZZ  ->  ( N  /L m )  e.  CC )
45 mulcom 8010 . . . . 5  |-  ( ( ( m  /L
N )  e.  CC  /\  ( N  /L
m )  e.  CC )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4643, 44, 45syl2an 289 . . . 4  |-  ( ( ( m  /L
N )  e.  ZZ  /\  ( N  /L
m )  e.  ZZ )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4740, 42, 46syl2anc 411 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4812nncnd 9006 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  CC )
49 ax-1cn 7974 . . . . . . 7  |-  1  e.  CC
50 subcl 8227 . . . . . . 7  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( m  -  1 )  e.  CC )
5148, 49, 50sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  - 
1 )  e.  CC )
5251halfcld 9238 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  -  1 )  / 
2 )  e.  CC )
536nncnd 9006 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  CC )
54 subcl 8227 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
5553, 49, 54sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  - 
1 )  e.  CC )
5655halfcld 9238 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  -  1 )  / 
2 )  e.  CC )
5752, 56mulcomd 8050 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  =  ( ( ( N  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) )
5857oveq2d 5939 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )
5938, 47, 583eqtr4d 2239 . 2  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
60 biid 171 . 2  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  /L N )  x.  ( N  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
611, 2, 3, 4, 5, 59, 60lgsquad2lem2 15333 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475    \ cdif 3154   {csn 3623   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7879   1c1 7882    x. cmul 7886    - cmin 8199   -ucneg 8200    / cdiv 8701   NNcn 8992   2c2 9043   ZZcz 9328   ZZ>=cuz 9603   ...cfz 10085   ^cexp 10632    || cdvds 11954    gcd cgcd 12130   Primecprime 12285    /Lclgs 15248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001  ax-addf 8003  ax-mulf 8004
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-of 6136  df-1st 6199  df-2nd 6200  df-tpos 6304  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6593  df-ec 6595  df-qs 6599  df-map 6710  df-en 6801  df-dom 6802  df-fin 6803  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-7 9056  df-8 9057  df-9 9058  df-n0 9252  df-z 9329  df-dec 9460  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-proddc 11718  df-dvds 11955  df-gcd 12131  df-prm 12286  df-phi 12389  df-pc 12464  df-struct 12690  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-mulr 12779  df-starv 12780  df-sca 12781  df-vsca 12782  df-ip 12783  df-tset 12784  df-ple 12785  df-ds 12787  df-unif 12788  df-0g 12939  df-igsum 12940  df-topgen 12941  df-iimas 12955  df-qus 12956  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-mhm 13101  df-submnd 13102  df-grp 13145  df-minusg 13146  df-sbg 13147  df-mulg 13260  df-subg 13310  df-nsg 13311  df-eqg 13312  df-ghm 13381  df-cmn 13426  df-abl 13427  df-mgp 13487  df-rng 13499  df-ur 13526  df-srg 13530  df-ring 13564  df-cring 13565  df-oppr 13634  df-dvdsr 13655  df-unit 13656  df-invr 13687  df-dvr 13698  df-rhm 13718  df-nzr 13746  df-subrg 13785  df-domn 13825  df-idom 13826  df-lmod 13855  df-lssm 13919  df-lsp 13953  df-sra 14001  df-rgmod 14002  df-lidl 14035  df-rsp 14036  df-2idl 14066  df-bl 14112  df-mopn 14113  df-fg 14115  df-metu 14116  df-cnfld 14123  df-zring 14157  df-zrh 14180  df-zn 14182  df-lgs 15249
This theorem is referenced by:  lgsquad3  15335
  Copyright terms: Public domain W3C validator