ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad2 Unicode version

Theorem lgsquad2 15324
Description: Extend lgsquad 15321 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
Assertion
Ref Expression
lgsquad2  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )

Proof of Theorem lgsquad2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2  |-  ( ph  ->  M  e.  NN )
2 lgsquad2.2 . 2  |-  ( ph  ->  -.  2  ||  M
)
3 lgsquad2.3 . 2  |-  ( ph  ->  N  e.  NN )
4 lgsquad2.4 . 2  |-  ( ph  ->  -.  2  ||  N
)
5 lgsquad2.5 . 2  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
63adantr 276 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  NN )
74adantr 276 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  N )
8 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
9 eldifi 3285 . . . . . 6  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  e.  Prime )
108, 9syl 14 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  Prime )
11 prmnn 12278 . . . . 5  |-  ( m  e.  Prime  ->  m  e.  NN )
1210, 11syl 14 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  NN )
13 eldifsni 3751 . . . . . . . 8  |-  ( m  e.  ( Prime  \  {
2 } )  ->  m  =/=  2 )
148, 13syl 14 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  =/=  2
)
1514necomd 2453 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  2  =/=  m
)
1615neneqd 2388 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  =  m )
17 2z 9354 . . . . . . 7  |-  2  e.  ZZ
18 uzid 9615 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
1917, 18ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
20 dvdsprm 12305 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  m  e.  Prime )  ->  (
2  ||  m  <->  2  =  m ) )
2119, 10, 20sylancr 414 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( 2  ||  m 
<->  2  =  m ) )
2216, 21mtbird 674 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  -.  2  ||  m )
236nnzd 9447 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  ZZ )
2412nnzd 9447 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  ZZ )
2523, 24gcdcomd 12141 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  ( m  gcd  N ) )
26 simprr 531 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  gcd  N )  =  1 )
2725, 26eqtrd 2229 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  gcd  m )  =  1 )
28 simprl 529 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  e.  ( Prime  \  { 2 } ) )
298adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
30 eldifi 3285 . . . . . . . 8  |-  ( n  e.  ( Prime  \  {
2 } )  ->  n  e.  Prime )
31 prmrp 12313 . . . . . . . 8  |-  ( ( n  e.  Prime  /\  m  e.  Prime )  ->  (
( n  gcd  m
)  =  1  <->  n  =/=  m ) )
3230, 10, 31syl2anr 290 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  <-> 
n  =/=  m ) )
3332biimpd 144 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  n  e.  ( Prime  \  { 2 } ) )  -> 
( ( n  gcd  m )  =  1  ->  n  =/=  m
) )
3433impr 379 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  n  =/=  m
)
35 lgsquad 15321 . . . . 5  |-  ( ( n  e.  ( Prime  \  { 2 } )  /\  m  e.  ( Prime  \  { 2 } )  /\  n  =/=  m )  ->  (
( n  /L
m )  x.  (
m  /L n ) )  =  (
-u 1 ^ (
( ( n  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) ) )
3628, 29, 34, 35syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )  /\  ( n  e.  ( Prime  \  {
2 } )  /\  ( n  gcd  m )  =  1 ) )  ->  ( ( n  /L m )  x.  ( m  /L n ) )  =  ( -u 1 ^ ( ( ( n  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
37 biid 171 . . . 4  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  m ) )  =  1  -> 
( ( x  /L m )  x.  ( m  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  m ) )  =  1  ->  ( (
x  /L m )  x.  ( m  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( m  -  1 )  / 
2 ) ) ) ) )
386, 7, 12, 22, 27, 36, 37lgsquad2lem2 15323 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  /L m )  x.  ( m  /L N ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  /  2 )  x.  ( ( m  - 
1 )  /  2
) ) ) )
39 lgscl 15255 . . . . 5  |-  ( ( m  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  /L
N )  e.  ZZ )
4024, 23, 39syl2anc 411 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  /L N )  e.  ZZ )
41 lgscl 15255 . . . . 5  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  /L
m )  e.  ZZ )
4223, 24, 41syl2anc 411 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  /L m )  e.  ZZ )
43 zcn 9331 . . . . 5  |-  ( ( m  /L N )  e.  ZZ  ->  ( m  /L N )  e.  CC )
44 zcn 9331 . . . . 5  |-  ( ( N  /L m )  e.  ZZ  ->  ( N  /L m )  e.  CC )
45 mulcom 8008 . . . . 5  |-  ( ( ( m  /L
N )  e.  CC  /\  ( N  /L
m )  e.  CC )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4643, 44, 45syl2an 289 . . . 4  |-  ( ( ( m  /L
N )  e.  ZZ  /\  ( N  /L
m )  e.  ZZ )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4740, 42, 46syl2anc 411 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( ( N  /L m )  x.  ( m  /L N ) ) )
4812nncnd 9004 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  m  e.  CC )
49 ax-1cn 7972 . . . . . . 7  |-  1  e.  CC
50 subcl 8225 . . . . . . 7  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( m  -  1 )  e.  CC )
5148, 49, 50sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( m  - 
1 )  e.  CC )
5251halfcld 9236 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  -  1 )  / 
2 )  e.  CC )
536nncnd 9004 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  N  e.  CC )
54 subcl 8225 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
5553, 49, 54sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( N  - 
1 )  e.  CC )
5655halfcld 9236 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( N  -  1 )  / 
2 )  e.  CC )
5752, 56mulcomd 8048 . . . 4  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  =  ( ( ( N  - 
1 )  /  2
)  x.  ( ( m  -  1 )  /  2 ) ) )
5857oveq2d 5938 . . 3  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  =  ( -u 1 ^ ( ( ( N  -  1 )  / 
2 )  x.  (
( m  -  1 )  /  2 ) ) ) )
5938, 47, 583eqtr4d 2239 . 2  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
60 biid 171 . 2  |-  ( A. x  e.  ( 1 ... y ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  /L N )  x.  ( N  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  <->  A. x  e.  ( 1 ... y
) ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
611, 2, 3, 4, 5, 59, 60lgsquad2lem2 15323 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475    \ cdif 3154   {csn 3622   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    x. cmul 7884    - cmin 8197   -ucneg 8198    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083   ^cexp 10630    || cdvds 11952    gcd cgcd 12120   Primecprime 12275    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-ec 6594  df-qs 6598  df-map 6709  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-sca 12771  df-vsca 12772  df-ip 12773  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-igsum 12930  df-topgen 12931  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-submnd 13092  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mulg 13250  df-subg 13300  df-nsg 13301  df-eqg 13302  df-ghm 13371  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-ur 13516  df-srg 13520  df-ring 13554  df-cring 13555  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677  df-dvr 13688  df-rhm 13708  df-nzr 13736  df-subrg 13775  df-domn 13815  df-idom 13816  df-lmod 13845  df-lssm 13909  df-lsp 13943  df-sra 13991  df-rgmod 13992  df-lidl 14025  df-rsp 14026  df-2idl 14056  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-zring 14147  df-zrh 14170  df-zn 14172  df-lgs 15239
This theorem is referenced by:  lgsquad3  15325
  Copyright terms: Public domain W3C validator