| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lgsquad2 | Unicode version | ||
| Description: Extend lgsquad 15321 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| lgsquad2.1 | 
 | 
| lgsquad2.2 | 
 | 
| lgsquad2.3 | 
 | 
| lgsquad2.4 | 
 | 
| lgsquad2.5 | 
 | 
| Ref | Expression | 
|---|---|
| lgsquad2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lgsquad2.1 | 
. 2
 | |
| 2 | lgsquad2.2 | 
. 2
 | |
| 3 | lgsquad2.3 | 
. 2
 | |
| 4 | lgsquad2.4 | 
. 2
 | |
| 5 | lgsquad2.5 | 
. 2
 | |
| 6 | 3 | adantr 276 | 
. . . 4
 | 
| 7 | 4 | adantr 276 | 
. . . 4
 | 
| 8 | simprl 529 | 
. . . . . 6
 | |
| 9 | eldifi 3285 | 
. . . . . 6
 | |
| 10 | 8, 9 | syl 14 | 
. . . . 5
 | 
| 11 | prmnn 12278 | 
. . . . 5
 | |
| 12 | 10, 11 | syl 14 | 
. . . 4
 | 
| 13 | eldifsni 3751 | 
. . . . . . . 8
 | |
| 14 | 8, 13 | syl 14 | 
. . . . . . 7
 | 
| 15 | 14 | necomd 2453 | 
. . . . . 6
 | 
| 16 | 15 | neneqd 2388 | 
. . . . 5
 | 
| 17 | 2z 9354 | 
. . . . . . 7
 | |
| 18 | uzid 9615 | 
. . . . . . 7
 | |
| 19 | 17, 18 | ax-mp 5 | 
. . . . . 6
 | 
| 20 | dvdsprm 12305 | 
. . . . . 6
 | |
| 21 | 19, 10, 20 | sylancr 414 | 
. . . . 5
 | 
| 22 | 16, 21 | mtbird 674 | 
. . . 4
 | 
| 23 | 6 | nnzd 9447 | 
. . . . . 6
 | 
| 24 | 12 | nnzd 9447 | 
. . . . . 6
 | 
| 25 | 23, 24 | gcdcomd 12141 | 
. . . . 5
 | 
| 26 | simprr 531 | 
. . . . 5
 | |
| 27 | 25, 26 | eqtrd 2229 | 
. . . 4
 | 
| 28 | simprl 529 | 
. . . . 5
 | |
| 29 | 8 | adantr 276 | 
. . . . 5
 | 
| 30 | eldifi 3285 | 
. . . . . . . 8
 | |
| 31 | prmrp 12313 | 
. . . . . . . 8
 | |
| 32 | 30, 10, 31 | syl2anr 290 | 
. . . . . . 7
 | 
| 33 | 32 | biimpd 144 | 
. . . . . 6
 | 
| 34 | 33 | impr 379 | 
. . . . 5
 | 
| 35 | lgsquad 15321 | 
. . . . 5
 | |
| 36 | 28, 29, 34, 35 | syl3anc 1249 | 
. . . 4
 | 
| 37 | biid 171 | 
. . . 4
 | |
| 38 | 6, 7, 12, 22, 27, 36, 37 | lgsquad2lem2 15323 | 
. . 3
 | 
| 39 | lgscl 15255 | 
. . . . 5
 | |
| 40 | 24, 23, 39 | syl2anc 411 | 
. . . 4
 | 
| 41 | lgscl 15255 | 
. . . . 5
 | |
| 42 | 23, 24, 41 | syl2anc 411 | 
. . . 4
 | 
| 43 | zcn 9331 | 
. . . . 5
 | |
| 44 | zcn 9331 | 
. . . . 5
 | |
| 45 | mulcom 8008 | 
. . . . 5
 | |
| 46 | 43, 44, 45 | syl2an 289 | 
. . . 4
 | 
| 47 | 40, 42, 46 | syl2anc 411 | 
. . 3
 | 
| 48 | 12 | nncnd 9004 | 
. . . . . . 7
 | 
| 49 | ax-1cn 7972 | 
. . . . . . 7
 | |
| 50 | subcl 8225 | 
. . . . . . 7
 | |
| 51 | 48, 49, 50 | sylancl 413 | 
. . . . . 6
 | 
| 52 | 51 | halfcld 9236 | 
. . . . 5
 | 
| 53 | 6 | nncnd 9004 | 
. . . . . . 7
 | 
| 54 | subcl 8225 | 
. . . . . . 7
 | |
| 55 | 53, 49, 54 | sylancl 413 | 
. . . . . 6
 | 
| 56 | 55 | halfcld 9236 | 
. . . . 5
 | 
| 57 | 52, 56 | mulcomd 8048 | 
. . . 4
 | 
| 58 | 57 | oveq2d 5938 | 
. . 3
 | 
| 59 | 38, 47, 58 | 3eqtr4d 2239 | 
. 2
 | 
| 60 | biid 171 | 
. 2
 | |
| 61 | 1, 2, 3, 4, 5, 59, 60 | lgsquad2lem2 15323 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-tpos 6303 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-ec 6594 df-qs 6598 df-map 6709 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-proddc 11716 df-dvds 11953 df-gcd 12121 df-prm 12276 df-phi 12379 df-pc 12454 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-sca 12771 df-vsca 12772 df-ip 12773 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-igsum 12930 df-topgen 12931 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-submnd 13092 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mulg 13250 df-subg 13300 df-nsg 13301 df-eqg 13302 df-ghm 13371 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-ur 13516 df-srg 13520 df-ring 13554 df-cring 13555 df-oppr 13624 df-dvdsr 13645 df-unit 13646 df-invr 13677 df-dvr 13688 df-rhm 13708 df-nzr 13736 df-subrg 13775 df-domn 13815 df-idom 13816 df-lmod 13845 df-lssm 13909 df-lsp 13943 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-rsp 14026 df-2idl 14056 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 df-zrh 14170 df-zn 14172 df-lgs 15239 | 
| This theorem is referenced by: lgsquad3 15325 | 
| Copyright terms: Public domain | W3C validator |