| Step | Hyp | Ref
 | Expression | 
| 1 |   | lgsquad2.1 | 
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 2 |   | lgsquad2.2 | 
. 2
⊢ (𝜑 → ¬ 2 ∥ 𝑀) | 
| 3 |   | lgsquad2.3 | 
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 4 |   | lgsquad2.4 | 
. 2
⊢ (𝜑 → ¬ 2 ∥ 𝑁) | 
| 5 |   | lgsquad2.5 | 
. 2
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) | 
| 6 | 3 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ) | 
| 7 | 4 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑁) | 
| 8 |   | simprl 529 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ (ℙ ∖
{2})) | 
| 9 |   | eldifi 3285 | 
. . . . . 6
⊢ (𝑚 ∈ (ℙ ∖ {2})
→ 𝑚 ∈
ℙ) | 
| 10 | 8, 9 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℙ) | 
| 11 |   | prmnn 12278 | 
. . . . 5
⊢ (𝑚 ∈ ℙ → 𝑚 ∈
ℕ) | 
| 12 | 10, 11 | syl 14 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℕ) | 
| 13 |   | eldifsni 3751 | 
. . . . . . . 8
⊢ (𝑚 ∈ (ℙ ∖ {2})
→ 𝑚 ≠
2) | 
| 14 | 8, 13 | syl 14 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ≠ 2) | 
| 15 | 14 | necomd 2453 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 2 ≠ 𝑚) | 
| 16 | 15 | neneqd 2388 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 = 𝑚) | 
| 17 |   | 2z 9354 | 
. . . . . . 7
⊢ 2 ∈
ℤ | 
| 18 |   | uzid 9615 | 
. . . . . . 7
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) | 
| 19 | 17, 18 | ax-mp 5 | 
. . . . . 6
⊢ 2 ∈
(ℤ≥‘2) | 
| 20 |   | dvdsprm 12305 | 
. . . . . 6
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑚 ∈ ℙ) → (2 ∥ 𝑚 ↔ 2 = 𝑚)) | 
| 21 | 19, 10, 20 | sylancr 414 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (2 ∥ 𝑚 ↔ 2 = 𝑚)) | 
| 22 | 16, 21 | mtbird 674 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑚) | 
| 23 | 6 | nnzd 9447 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℤ) | 
| 24 | 12 | nnzd 9447 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℤ) | 
| 25 | 23, 24 | gcdcomd 12141 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = (𝑚 gcd 𝑁)) | 
| 26 |   | simprr 531 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 gcd 𝑁) = 1) | 
| 27 | 25, 26 | eqtrd 2229 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = 1) | 
| 28 |   | simprl 529 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛 ∈ (ℙ ∖
{2})) | 
| 29 | 8 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑚 ∈ (ℙ ∖
{2})) | 
| 30 |   | eldifi 3285 | 
. . . . . . . 8
⊢ (𝑛 ∈ (ℙ ∖ {2})
→ 𝑛 ∈
ℙ) | 
| 31 |   | prmrp 12313 | 
. . . . . . . 8
⊢ ((𝑛 ∈ ℙ ∧ 𝑚 ∈ ℙ) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛 ≠ 𝑚)) | 
| 32 | 30, 10, 31 | syl2anr 290 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛 ≠ 𝑚)) | 
| 33 | 32 | biimpd 144 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 → 𝑛 ≠ 𝑚)) | 
| 34 | 33 | impr 379 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛 ≠ 𝑚) | 
| 35 |   | lgsquad 15321 | 
. . . . 5
⊢ ((𝑛 ∈ (ℙ ∖ {2})
∧ 𝑚 ∈ (ℙ
∖ {2}) ∧ 𝑛 ≠
𝑚) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) /
2)))) | 
| 36 | 28, 29, 34, 35 | syl3anc 1249 | 
. . . 4
⊢ (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) /
2)))) | 
| 37 |   | biid 171 | 
. . . 4
⊢
(∀𝑥 ∈
(1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))) ↔
∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) /
2))))) | 
| 38 | 6, 7, 12, 22, 27, 36, 37 | lgsquad2lem2 15323 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) /
2)))) | 
| 39 |   | lgscl 15255 | 
. . . . 5
⊢ ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 /L 𝑁) ∈
ℤ) | 
| 40 | 24, 23, 39 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 /L 𝑁) ∈ ℤ) | 
| 41 |   | lgscl 15255 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 /L 𝑚) ∈
ℤ) | 
| 42 | 23, 24, 41 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 /L 𝑚) ∈ ℤ) | 
| 43 |   | zcn 9331 | 
. . . . 5
⊢ ((𝑚 /L 𝑁) ∈ ℤ → (𝑚 /L 𝑁) ∈
ℂ) | 
| 44 |   | zcn 9331 | 
. . . . 5
⊢ ((𝑁 /L 𝑚) ∈ ℤ → (𝑁 /L 𝑚) ∈
ℂ) | 
| 45 |   | mulcom 8008 | 
. . . . 5
⊢ (((𝑚 /L 𝑁) ∈ ℂ ∧ (𝑁 /L 𝑚) ∈ ℂ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁))) | 
| 46 | 43, 44, 45 | syl2an 289 | 
. . . 4
⊢ (((𝑚 /L 𝑁) ∈ ℤ ∧ (𝑁 /L 𝑚) ∈ ℤ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁))) | 
| 47 | 40, 42, 46 | syl2anc 411 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁))) | 
| 48 | 12 | nncnd 9004 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℂ) | 
| 49 |   | ax-1cn 7972 | 
. . . . . . 7
⊢ 1 ∈
ℂ | 
| 50 |   | subcl 8225 | 
. . . . . . 7
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑚 −
1) ∈ ℂ) | 
| 51 | 48, 49, 50 | sylancl 413 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 − 1) ∈ ℂ) | 
| 52 | 51 | halfcld 9236 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 − 1) / 2) ∈
ℂ) | 
| 53 | 6 | nncnd 9004 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℂ) | 
| 54 |   | subcl 8225 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 −
1) ∈ ℂ) | 
| 55 | 53, 49, 54 | sylancl 413 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 − 1) ∈ ℂ) | 
| 56 | 55 | halfcld 9236 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 − 1) / 2) ∈
ℂ) | 
| 57 | 52, 56 | mulcomd 8048 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑁 − 1) / 2) · ((𝑚 − 1) /
2))) | 
| 58 | 57 | oveq2d 5938 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (-1↑(((𝑚 − 1) / 2) ·
((𝑁 − 1) / 2))) =
(-1↑(((𝑁 − 1) /
2) · ((𝑚 − 1)
/ 2)))) | 
| 59 | 38, 47, 58 | 3eqtr4d 2239 | 
. 2
⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) | 
| 60 |   | biid 171 | 
. 2
⊢
(∀𝑥 ∈
(1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) | 
| 61 | 1, 2, 3, 4, 5, 59,
60 | lgsquad2lem2 15323 | 
1
⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) /
2)))) |