| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem1a2 | GIF version | ||
| Description: Lemma 2 for 2lgslem1a 15609. (Contributed by AV, 18-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem1a2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9383 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 2 | 1 | rehalfcld 9291 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ) |
| 4 | id 19 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℤ) | |
| 5 | 2z 9407 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 6 | 5 | a1i 9 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 2 ∈ ℤ) |
| 7 | 4, 6 | zmulcld 9508 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ) |
| 8 | 7 | zred 9502 | . . . 4 ⊢ (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ) |
| 10 | 2re 9113 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 11 | 2pos 9134 | . . . . 5 ⊢ 0 < 2 | |
| 12 | 10, 11 | pm3.2i 272 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 13 | 12 | a1i 9 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2)) |
| 14 | ltdiv1 8948 | . . 3 ⊢ (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2))) | |
| 15 | 3, 9, 13, 14 | syl3anc 1250 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2))) |
| 16 | zcn 9384 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | 16 | adantr 276 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 18 | 2cnd 9116 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ) | |
| 19 | 2ap0 9136 | . . . . . 6 ⊢ 2 # 0 | |
| 20 | 19 | a1i 9 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 # 0) |
| 21 | 17, 18, 18, 20, 20 | divdivap1d 8902 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 22 | 2t2e4 9198 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 23 | 22 | oveq2i 5962 | . . . 4 ⊢ (𝑁 / (2 · 2)) = (𝑁 / 4) |
| 24 | 21, 23 | eqtrdi 2255 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
| 25 | zcn 9384 | . . . . 5 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℂ) | |
| 26 | 25 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ) |
| 27 | 26, 18, 20 | divcanap4d 8876 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼) |
| 28 | 24, 27 | breq12d 4060 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼)) |
| 29 | 4nn 9207 | . . . 4 ⊢ 4 ∈ ℕ | |
| 30 | znq 9752 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
| 31 | 29, 30 | mpan2 425 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ) |
| 32 | flqlt 10433 | . . 3 ⊢ (((𝑁 / 4) ∈ ℚ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼)) | |
| 33 | 31, 32 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼)) |
| 34 | 15, 28, 33 | 3bitrrd 215 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 ℝcr 7931 0cc0 7932 · cmul 7937 < clt 8114 # cap 8661 / cdiv 8752 ℕcn 9043 2c2 9094 4c4 9096 ℤcz 9379 ℚcq 9747 ⌊cfl 10418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-q 9748 df-rp 9783 df-fl 10420 |
| This theorem is referenced by: 2lgslem1a 15609 |
| Copyright terms: Public domain | W3C validator |