HomeHome Intuitionistic Logic Explorer
Theorem List (p. 157 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15601-15700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembdcpr 15601 The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥, 𝑦}
 
Theorembdctp 15602 The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥, 𝑦, 𝑧}
 
Theorembdsnss 15603* Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED {𝑥} ⊆ 𝐴
 
Theorembdvsn 15604* Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥 = {𝑦}
 
Theorembdop 15605 The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
BOUNDED𝑥, 𝑦
 
Theorembdcuni 15606 The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
BOUNDED 𝑥
 
Theorembdcint 15607 The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥
 
Theorembdciun 15608* The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝑦 𝐴
 
Theorembdciin 15609* The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝑦 𝐴
 
Theorembdcsuc 15610 The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED suc 𝑥
 
Theorembdeqsuc 15611* Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
BOUNDED 𝑥 = suc 𝑦
 
Theorembj-bdsucel 15612 Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.)
BOUNDED suc 𝑥𝑦
 
Theorembdcriota 15613* A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
BOUNDED 𝜑    &   ∃!𝑥𝑦 𝜑       BOUNDED (𝑥𝑦 𝜑)
 
13.2.9  CZF: Bounded separation

In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory.

 
Axiomax-bdsep 15614* Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4152. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsep1 15615* Version of ax-bdsep 15614 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsep2 15616* Version of ax-bdsep 15614 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 15615 when sufficient. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsepnft 15617* Closed form of bdsepnf 15618. Version of ax-bdsep 15614 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 15615 when sufficient. (Contributed by BJ, 19-Oct-2019.)
BOUNDED 𝜑       (∀𝑥𝑏𝜑 → ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑)))
 
Theorembdsepnf 15618* Version of ax-bdsep 15614 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 15619. Use bdsep1 15615 when sufficient. (Contributed by BJ, 5-Oct-2019.)
𝑏𝜑    &   BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
TheorembdsepnfALT 15619* Alternate proof of bdsepnf 15618, not using bdsepnft 15617. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑏𝜑    &   BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdzfauscl 15620* Closed form of the version of zfauscl 4154 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
BOUNDED 𝜑       (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
 
Theorembdbm1.3ii 15621* Bounded version of bm1.3ii 4155. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝑦(𝜑𝑦𝑥)       𝑥𝑦(𝑦𝑥𝜑)
 
Theorembj-axemptylem 15622* Lemma for bj-axempty 15623 and bj-axempty2 15624. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4160 instead. (New usage is discouraged.)
𝑥𝑦(𝑦𝑥 → ⊥)
 
Theorembj-axempty 15623* Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4159. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4160 instead. (New usage is discouraged.)
𝑥𝑦𝑥
 
Theorembj-axempty2 15624* Axiom of the empty set from bounded separation, alternate version to bj-axempty 15623. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4160 instead. (New usage is discouraged.)
𝑥𝑦 ¬ 𝑦𝑥
 
Theorembj-nalset 15625* nalset 4164 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ ∃𝑥𝑦 𝑦𝑥
 
Theorembj-vprc 15626 vprc 4166 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ V ∈ V
 
Theorembj-nvel 15627 nvel 4167 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ V ∈ 𝐴
 
Theorembj-vnex 15628 vnex 4165 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ ∃𝑥 𝑥 = V
 
Theorembdinex1 15629 Bounded version of inex1 4168. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵    &   𝐴 ∈ V       (𝐴𝐵) ∈ V
 
Theorembdinex2 15630 Bounded version of inex2 4169. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵    &   𝐴 ∈ V       (𝐵𝐴) ∈ V
 
Theorembdinex1g 15631 Bounded version of inex1g 4170. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵       (𝐴𝑉 → (𝐴𝐵) ∈ V)
 
Theorembdssex 15632 Bounded version of ssex 4171. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   𝐵 ∈ V       (𝐴𝐵𝐴 ∈ V)
 
Theorembdssexi 15633 Bounded version of ssexi 4172. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   𝐵 ∈ V    &   𝐴𝐵       𝐴 ∈ V
 
Theorembdssexg 15634 Bounded version of ssexg 4173. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theorembdssexd 15635 Bounded version of ssexd 4174. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝜑𝐵𝐶)    &   (𝜑𝐴𝐵)    &   BOUNDED 𝐴       (𝜑𝐴 ∈ V)
 
Theorembdrabexg 15636* Bounded version of rabexg 4177. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   BOUNDED 𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theorembj-inex 15637 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theorembj-intexr 15638 intexr 4184 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
( 𝐴 ∈ V → 𝐴 ≠ ∅)
 
Theorembj-intnexr 15639 intnexr 4185 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
( 𝐴 = V → ¬ 𝐴 ∈ V)
 
Theorembj-zfpair2 15640 Proof of zfpair2 4244 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
{𝑥, 𝑦} ∈ V
 
Theorembj-prexg 15641 Proof of prexg 4245 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
 
Theorembj-snexg 15642 snexg 4218 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → {𝐴} ∈ V)
 
Theorembj-snex 15643 snex 4219 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V       {𝐴} ∈ V
 
Theorembj-sels 15644* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
(𝐴𝑉 → ∃𝑥 𝐴𝑥)
 
Theorembj-axun2 15645* axun2 4471 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
 
Theorembj-uniex2 15646* uniex2 4472 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
𝑦 𝑦 = 𝑥
 
Theorembj-uniex 15647 uniex 4473 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V        𝐴 ∈ V
 
Theorembj-uniexg 15648 uniexg 4475 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 𝐴 ∈ V)
 
Theorembj-unex 15649 unex 4477 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐵) ∈ V
 
Theorembdunexb 15650 Bounded version of unexb 4478. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   BOUNDED 𝐵       ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
 
Theorembj-unexg 15651 unexg 4479 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theorembj-sucexg 15652 sucexg 4535 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → suc 𝐴 ∈ V)
 
Theorembj-sucex 15653 sucex 4536 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V       suc 𝐴 ∈ V
 
13.2.9.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 15654 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
BOUNDED 𝜑       DECID 𝜑
 
Theorembj-d0clsepcl 15655 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
DECID 𝜑
 
13.2.9.2  Inductive classes and the class of natural number ordinals
 
Syntaxwind 15656 Syntax for inductive classes.
wff Ind 𝐴
 
Definitiondf-bj-ind 15657* Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
(Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
 
Theorembj-indsuc 15658 A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
(Ind 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
 
Theorembj-indeq 15659 Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
(𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵))
 
Theorembj-bdind 15660 Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.)
BOUNDED Ind 𝑥
 
Theorembj-indint 15661* The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Ind {𝑥𝐴 ∣ Ind 𝑥}
 
Theorembj-indind 15662* If 𝐴 is inductive and 𝐵 is "inductive in 𝐴", then (𝐴𝐵) is inductive. (Contributed by BJ, 25-Oct-2020.)
((Ind 𝐴 ∧ (∅ ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑥𝐵 → suc 𝑥𝐵))) → Ind (𝐴𝐵))
 
Theorembj-dfom 15663 Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
ω = {𝑥 ∣ Ind 𝑥}
 
Theorembj-omind 15664 ω is an inductive class. (Contributed by BJ, 30-Nov-2019.)
Ind ω
 
Theorembj-omssind 15665 ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
 
Theorembj-ssom 15666* A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
 
Theorembj-om 15667* A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
 
Theorembj-2inf 15668* Two formulations of the axiom of infinity (see ax-infvn 15671 and bj-omex 15672) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
(ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦)))
 
13.2.9.3  The first three Peano postulates

The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4631 and peano3 4633 already show this. In this section, we prove bj-peano2 15669 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms.

 
Theorembj-peano2 15669 Constructive proof of peano2 4632. Temporary note: another possibility is to simply replace sucexg 4535 with bj-sucexg 15652 in the proof of peano2 4632. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → suc 𝐴 ∈ ω)
 
Theorempeano5set 15670* Version of peano5 4635 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
 
13.2.10  CZF: Infinity

In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements.

 
13.2.10.1  The set of natural number ordinals

In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 15671) and deduce that the class ω of natural number ordinals is a set (bj-omex 15672).

 
Axiomax-infvn 15671* Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4625) from which one then proves, using full separation, that the wanted set exists (omex 4630). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.)
𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦𝑥𝑦))
 
Theorembj-omex 15672 Proof of omex 4630 from ax-infvn 15671. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.)
ω ∈ V
 
13.2.10.2  Peano's fifth postulate

In this section, we give constructive proofs of two versions of Peano's fifth postulate.

 
Theorembdpeano5 15673* Bounded version of peano5 4635. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
 
Theoremspeano5 15674* Version of peano5 4635 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
 
13.2.10.3  Bounded induction and Peano's fourth postulate

In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers.

 
Theoremfindset 15675* Bounded induction (principle of induction when 𝐴 is assumed to be a set) allowing a proof from basic constructive axioms. See find 4636 for a nonconstructive proof of the general case. See bdfind 15676 for a proof when 𝐴 is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω))
 
Theorembdfind 15676* Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4636 for a nonconstructive proof of the general case. See findset 15675 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → 𝐴 = ω)
 
Theorembj-bdfindis 15677* Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4637 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4637, finds2 4638, finds1 4639. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-bdfindisg 15678* Version of bj-bdfindis 15677 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15677 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑥𝜃    &   (𝑥 = ∅ → (𝜓𝜑))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = suc 𝑦 → (𝜃𝜑))    &   𝑥𝐴    &   𝑥𝜏    &   (𝑥 = 𝐴 → (𝜑𝜏))       ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒𝜃)) → (𝐴 ∈ ω → 𝜏))
 
Theorembj-bdfindes 15679 Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 15677 for explanations. From this version, it is easy to prove the bounded version of findes 4640. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑       (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
 
Theorembj-nn0suc0 15680* Constructive proof of a variant of nn0suc 4641. For a constructive proof of nn0suc 4641, see bj-nn0suc 15694. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
 
Theorembj-nntrans 15681 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
 
Theorembj-nntrans2 15682 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Tr 𝐴)
 
Theorembj-nnelirr 15683 A natural number does not belong to itself. Version of elirr 4578 for natural numbers, which does not require ax-setind 4574. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω → ¬ 𝐴𝐴)
 
Theorembj-nnen2lp 15684 A version of en2lp 4591 for natural numbers, which does not require ax-setind 4574.

Note: using this theorem and bj-nnelirr 15683, one can remove dependency on ax-setind 4574 from nntri2 6561 and nndcel 6567; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))
 
Theorembj-peano4 15685 Remove from peano4 4634 dependency on ax-setind 4574. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
 
Theorembj-omtrans 15686 The set ω is transitive. A natural number is included in ω. Constructive proof of elnn 4643.

The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

(𝐴 ∈ ω → 𝐴 ⊆ ω)
 
Theorembj-omtrans2 15687 The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Tr ω
 
Theorembj-nnord 15688 A natural number is an ordinal class. Constructive proof of nnord 4649. Can also be proved from bj-nnelon 15689 if the latter is proved from bj-omssonALT 15693. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Ord 𝐴)
 
Theorembj-nnelon 15689 A natural number is an ordinal. Constructive proof of nnon 4647. Can also be proved from bj-omssonALT 15693. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → 𝐴 ∈ On)
 
Theorembj-omord 15690 The set ω is an ordinal class. Constructive proof of ordom 4644. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Ord ω
 
Theorembj-omelon 15691 The set ω is an ordinal. Constructive proof of omelon 4646. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
ω ∈ On
 
Theorembj-omsson 15692 Constructive proof of omsson 4650. See also bj-omssonALT 15693. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
ω ⊆ On
 
Theorembj-omssonALT 15693 Alternate proof of bj-omsson 15692. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
ω ⊆ On
 
Theorembj-nn0suc 15694* Proof of (biconditional form of) nn0suc 4641 from the core axioms of CZF. See also bj-nn0sucALT 15708. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
 
13.2.11  CZF: Set induction

In this section, we add the axiom of set induction to the core axioms of CZF.

 
13.2.11.1  Set induction

In this section, we prove some variants of the axiom of set induction.

 
Theoremsetindft 15695* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
(∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
 
Theoremsetindf 15696* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
𝑦𝜑       (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
 
Theoremsetindis 15697* Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.)
𝑥𝜓    &   𝑥𝜒    &   𝑦𝜑    &   𝑦𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜒𝜑))       (∀𝑦(∀𝑧𝑦 𝜓𝜒) → ∀𝑥𝜑)
 
Axiomax-bdsetind 15698* Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.)
BOUNDED 𝜑       (∀𝑎(∀𝑦𝑎 [𝑦 / 𝑎]𝜑𝜑) → ∀𝑎𝜑)
 
Theorembdsetindis 15699* Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝜓    &   𝑥𝜒    &   𝑦𝜑    &   𝑦𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜒𝜑))       (∀𝑦(∀𝑧𝑦 𝜓𝜒) → ∀𝑥𝜑)
 
Theorembj-inf2vnlem1 15700* Lemma for bj-inf2vn 15704. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
(∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >