| Intuitionistic Logic Explorer Theorem List (p. 157 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rpcxplt2 15601 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑐𝐶) < (𝐵↑𝑐𝐶))) | ||
| Theorem | cxplt3 15602 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
| Theorem | cxple3 15603 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
| Theorem | rpcxpsqrt 15604 | The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) | ||
| Theorem | logsqrt 15605 | Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2)) | ||
| Theorem | rpcxp0d 15606 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑐0) = 1) | ||
| Theorem | rpcxp1d 15607 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑐1) = 𝐴) | ||
| Theorem | 1cxpd 15608 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1↑𝑐𝐴) = 1) | ||
| Theorem | rpcncxpcld 15609 | Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
| Theorem | cxpltd 15610 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
| Theorem | cxpled 15611 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
| Theorem | rpcxpsqrtth 15612 | Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 11550. (Contributed by AV, 23-Dec-2022.) |
| ⊢ (𝐴 ∈ ℝ+ → ((√‘𝐴)↑𝑐2) = 𝐴) | ||
| Theorem | cxprecd 15613 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
| Theorem | rpcxpmul2d 15614 | Product of exponents law for complex exponentiation. Variation on cxpmul 15594 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
| Theorem | rpcxpcld 15615 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
| Theorem | logcxpd 15616 | Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
| Theorem | cxplt3d 15617 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
| Theorem | cxple3d 15618 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
| Theorem | cxpmuld 15619 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
| Theorem | cxpcom 15620 | Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶)↑𝑐𝐵)) | ||
| Theorem | apcxp2 15621 | Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) | ||
| Theorem | rpabscxpbnd 15622 | Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 0 < (ℜ‘𝐵)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 𝑀) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑐𝐵)) ≤ ((𝑀↑𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π)))) | ||
| Theorem | ltexp2 15623 | Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
| Theorem | ltexp2d 15624 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
Define "log using an arbitrary base" function and then prove some of its properties. As with df-relog 15540 this is for real logarithms rather than complex logarithms. Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log". There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (𝐵 logb 𝑋) where 𝐵 is the base and 𝑋 is the argument of the logarithm function. An alternative would be to support the notational form (( logb ‘𝐵)‘𝑋); that looks a little more like traditional notation. | ||
| Syntax | clogb 15625 | Extend class notation to include the logarithm generalized to an arbitrary base. |
| class logb | ||
| Definition | df-logb 15626* | Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where 𝑥 is a positive real apart from one and where 𝑦 is a positive real, so the choice of (ℂ ∖ {0, 1}) and (ℂ ∖ {0}) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.) |
| ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | ||
| Theorem | rplogbval 15627 | Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | ||
| Theorem | rplogbcl 15628 | General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | ||
| Theorem | rplogbid1 15629 | General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) → (𝐴 logb 𝐴) = 1) | ||
| Theorem | rplogb1 15630 | The logarithm of 1 to an arbitrary base 𝐵 is 0. Property 1(b) of [Cohen4] p. 361. See log1 15548. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) → (𝐵 logb 1) = 0) | ||
| Theorem | rpelogb 15631 | The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using e as the base in logb is the same as log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.) |
| ⊢ (𝐴 ∈ ℝ+ → (e logb 𝐴) = (log‘𝐴)) | ||
| Theorem | rplogbchbase 15632 | Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴))) | ||
| Theorem | relogbval 15633 | Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | ||
| Theorem | relogbzcl 15634 | Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ) | ||
| Theorem | rplogbreexp 15635 | Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) | ||
| Theorem | rplogbzexp 15636 | Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐵 logb (𝐶↑𝑁)) = (𝑁 · (𝐵 logb 𝐶))) | ||
| Theorem | rprelogbmul 15637 | The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) | ||
| Theorem | rprelogbmulexp 15638 | The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶↑𝑐𝐸))) = ((𝐵 logb 𝐴) + (𝐸 · (𝐵 logb 𝐶)))) | ||
| Theorem | rprelogbdiv 15639 | The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) | ||
| Theorem | relogbexpap 15640 | Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | nnlogbexp 15641 | Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | logbrec 15642 | Logarithm of a reciprocal changes sign. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴)) | ||
| Theorem | logbleb 15643 | The general logarithm function is monotone/increasing. See logleb 15557. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌))) | ||
| Theorem | logblt 15644 | The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 15556. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) | ||
| Theorem | rplogbcxp 15645 | Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑋)) = 𝑋) | ||
| Theorem | rpcxplogb 15646 | Identity law for the general logarithm. (Contributed by AV, 22-May-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | ||
| Theorem | relogbcxpbap 15647 | The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) | ||
| Theorem | logbgt0b 15648 | The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴)) | ||
| Theorem | logbgcd1irr 15649 | The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ). (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | logbgcd1irraplemexp 15650 | Lemma for logbgcd1irrap 15652. Apartness of 𝑋↑𝑁 and 𝐵↑𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑋↑𝑁) # (𝐵↑𝑀)) | ||
| Theorem | logbgcd1irraplemap 15651 | Lemma for logbgcd1irrap 15652. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → (𝑋 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁)) | ||
| Theorem | logbgcd1irrap 15652 | The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.) |
| ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄) | ||
| Theorem | 2logb9irr 15653 | Example for logbgcd1irr 15649. The logarithm of nine to base two is not rational. Also see 2logb9irrap 15659 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.) |
| ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
| Theorem | logbprmirr 15654 | The logarithm of a prime to a different prime base is not rational. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 15655). (Contributed by AV, 31-Dec-2022.) |
| ⊢ ((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | 2logb3irr 15655 | Example for logbprmirr 15654. The logarithm of three to base two is not rational. (Contributed by AV, 31-Dec-2022.) |
| ⊢ (2 logb 3) ∈ (ℝ ∖ ℚ) | ||
| Theorem | 2logb9irrALT 15656 | Alternate proof of 2logb9irr 15653: The logarithm of nine to base two is not rational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
| Theorem | sqrt2cxp2logb9e3 15657 | The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12694 resp. 2logb9irr 15653), satisfying the statement in 2irrexpq 15658. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | ||
| Theorem | 2irrexpq 15658* |
There exist real numbers 𝑎 and 𝑏 which are not rational
such
that (𝑎↑𝑏) is rational. Statement in the
Metamath book, section
1.1.5, footnote 27 on page 17, and the "constructive proof"
for theorem
1.2 of [Bauer], p. 483. This is a
constructive proof because it is
based on two explicitly named non-rational numbers (√‘2) and
(2 logb 9), see sqrt2irr0 12694, 2logb9irr 15653 and
sqrt2cxp2logb9e3 15657. Therefore, this proof is acceptable/usable
in
intuitionistic logic.
For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15660. (Contributed by AV, 23-Dec-2022.) |
| ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | ||
| Theorem | 2logb9irrap 15659 | Example for logbgcd1irrap 15652. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.) |
| ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) | ||
| Theorem | 2irrexpqap 15660* | There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12710, 2logb9irrap 15659 and sqrt2cxp2logb9e3 15657. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.) |
| ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) | ||
| Theorem | binom4 15661 | Work out a quartic binomial. (You would think that by this point it would be faster to use binom 12003, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) | ||
| Theorem | wilthlem1 15662 | The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃ℤ are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 12766, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃ℤ. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1)))) | ||
| Syntax | csgm 15663 | Extend class notation with the divisor function. |
| class σ | ||
| Definition | df-sgm 15664* | Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | ||
| Theorem | sgmval 15665* | The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝑐𝐴)) | ||
| Theorem | sgmval2 15666* | The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | ||
| Theorem | 0sgm 15667* | The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ ℕ → (0 σ 𝐴) = (♯‘{𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴})) | ||
| Theorem | sgmf 15668 | The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
| ⊢ σ :(ℂ × ℕ)⟶ℂ | ||
| Theorem | sgmcl 15669 | Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℂ) | ||
| Theorem | sgmnncl 15670 | Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) | ||
| Theorem | dvdsppwf1o 15671* | A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃↑𝑛)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) | ||
| Theorem | mpodvdsmulf1o 15672* | If 𝑀 and 𝑁 are two coprime integers, multiplication forms a bijection from the set of pairs 〈𝑗, 𝑘〉 where 𝑗 ∥ 𝑀 and 𝑘 ∥ 𝑁, to the set of divisors of 𝑀 · 𝑁. (Contributed by GG, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} & ⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} ⇒ ⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) | ||
| Theorem | fsumdvdsmul 15673* | Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘 ∥ 𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 8130. (Revised by GG, 18-Apr-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} & ⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) = 𝐷) & ⊢ (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑖 ∈ 𝑍 𝐶) | ||
| Theorem | sgmppw 15674* | The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) | ||
| Theorem | 0sgmppw 15675 | A prime power 𝑃↑𝐾 has 𝐾 + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃↑𝐾)) = (𝐾 + 1)) | ||
| Theorem | 1sgmprm 15676 | The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) | ||
| Theorem | 1sgm2ppw 15677 | The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) | ||
| Theorem | sgmmul 15678 | The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) | ||
| Theorem | mersenne 15679 | A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ) | ||
| Theorem | perfect1 15680 | Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1))) | ||
| Theorem | perfectlem1 15681 | Lemma for perfect 15683. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | ||
| Theorem | perfectlem2 15682 | Lemma for perfect 15683. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by Wolf Lammen, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | ||
| Theorem | perfect 15683* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime), and therefore 𝑝 is also prime, see mersenne 15679. This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | ||
If the congruence ((𝑥↑2) mod 𝑝) = (𝑛 mod 𝑝) has a solution we say that 𝑛 is a quadratic residue mod 𝑝. If the congruence has no solution we say that 𝑛 is a quadratic nonresidue mod 𝑝, see definition in [ApostolNT] p. 178. The Legendre symbol (𝑛 /L 𝑝) is defined in a way that its value is 1 if 𝑛 is a quadratic residue mod 𝑝 and -1 if 𝑛 is a quadratic nonresidue mod 𝑝 (and 0 if 𝑝 divides 𝑛). Originally, the Legendre symbol (𝑁 /L 𝑃) was defined for odd primes 𝑃 only (and arbitrary integers 𝑁) by Adrien-Marie Legendre in 1798, see definition in [ApostolNT] p. 179. It was generalized to be defined for any positive odd integer by Carl Gustav Jacob Jacobi in 1837 (therefore called "Jacobi symbol" since then), see definition in [ApostolNT] p. 188. Finally, it was generalized to be defined for any integer by Leopold Kronecker in 1885 (therefore called "Kronecker symbol" since then). The definition df-lgs 15685 for the "Legendre symbol" /L is actually the definition of the "Kronecker symbol". Since only one definition (and one class symbol) are provided in set.mm, the names "Legendre symbol", "Jacobi symbol" and "Kronecker symbol" are used synonymously for /L, but mostly it is called "Legendre symbol", even if it is used in the context of a "Jacobi symbol" or "Kronecker symbol". | ||
| Syntax | clgs 15684 | Extend class notation with the Legendre symbol function. |
| class /L | ||
| Definition | df-lgs 15685* | Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) | ||
| Theorem | zabsle1 15686 | {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1)) | ||
| Theorem | lgslem1 15687 | When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | ||
| Theorem | lgslem2 15688 | The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) | ||
| Theorem | lgslem3 15689* | The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐴 · 𝐵) ∈ 𝑍) | ||
| Theorem | lgslem4 15690* | Lemma for lgsfcl2 15693. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) | ||
| Theorem | lgsval 15691* | Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) | ||
| Theorem | lgsfvalg 15692* | Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1)) | ||
| Theorem | lgsfcl2 15693* | The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 15686). (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) | ||
| Theorem | lgscllem 15694* | The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||
| Theorem | lgsfcl 15695* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||
| Theorem | lgsfle1 15696* | The function 𝐹 has magnitude less or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹‘𝑀)) ≤ 1) | ||
| Theorem | lgsval2lem 15697* | Lemma for lgsval2 15703. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) | ||
| Theorem | lgsval4lem 15698* | Lemma for lgsval4 15707. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) | ||
| Theorem | lgscl2 15699* | The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||
| Theorem | lgs0 15700 | The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |