| Intuitionistic Logic Explorer Theorem List (p. 157 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bdcpr 15601 | The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED {𝑥, 𝑦} | ||
| Theorem | bdctp 15602 | The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED {𝑥, 𝑦, 𝑧} | ||
| Theorem | bdsnss 15603* | Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED {𝑥} ⊆ 𝐴 | ||
| Theorem | bdvsn 15604* | Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED 𝑥 = {𝑦} | ||
| Theorem | bdop 15605 | The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
| ⊢ BOUNDED 〈𝑥, 𝑦〉 | ||
| Theorem | bdcuni 15606 | The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
| ⊢ BOUNDED ∪ 𝑥 | ||
| Theorem | bdcint 15607 | The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED ∩ 𝑥 | ||
| Theorem | bdciun 15608* | The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 | ||
| Theorem | bdciin 15609* | The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 | ||
| Theorem | bdcsuc 15610 | The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| ⊢ BOUNDED suc 𝑥 | ||
| Theorem | bdeqsuc 15611* | Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
| ⊢ BOUNDED 𝑥 = suc 𝑦 | ||
| Theorem | bj-bdsucel 15612 | Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.) |
| ⊢ BOUNDED suc 𝑥 ∈ 𝑦 | ||
| Theorem | bdcriota 15613* | A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
| ⊢ BOUNDED 𝜑 & ⊢ ∃!𝑥 ∈ 𝑦 𝜑 ⇒ ⊢ BOUNDED (℩𝑥 ∈ 𝑦 𝜑) | ||
In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory. | ||
| Axiom | ax-bdsep 15614* | Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4152. (Contributed by BJ, 5-Oct-2019.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
| Theorem | bdsep1 15615* | Version of ax-bdsep 15614 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
| Theorem | bdsep2 15616* | Version of ax-bdsep 15614 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 15615 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
| Theorem | bdsepnft 15617* | Closed form of bdsepnf 15618. Version of ax-bdsep 15614 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 15615 when sufficient. (Contributed by BJ, 19-Oct-2019.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑥Ⅎ𝑏𝜑 → ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) | ||
| Theorem | bdsepnf 15618* | Version of ax-bdsep 15614 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 15619. Use bdsep1 15615 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
| ⊢ Ⅎ𝑏𝜑 & ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
| Theorem | bdsepnfALT 15619* | Alternate proof of bdsepnf 15618, not using bdsepnft 15617. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑏𝜑 & ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
| Theorem | bdzfauscl 15620* | Closed form of the version of zfauscl 4154 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
| Theorem | bdbm1.3ii 15621* | Bounded version of bm1.3ii 4155. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝜑 & ⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
| Theorem | bj-axemptylem 15622* | Lemma for bj-axempty 15623 and bj-axempty2 15624. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4160 instead. (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | ||
| Theorem | bj-axempty 15623* | Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4159. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4160 instead. (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ | ||
| Theorem | bj-axempty2 15624* | Axiom of the empty set from bounded separation, alternate version to bj-axempty 15623. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4160 instead. (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | bj-nalset 15625* | nalset 4164 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
| Theorem | bj-vprc 15626 | vprc 4166 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ V ∈ V | ||
| Theorem | bj-nvel 15627 | nvel 4167 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ V ∈ 𝐴 | ||
| Theorem | bj-vnex 15628 | vnex 4165 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ ∃𝑥 𝑥 = V | ||
| Theorem | bdinex1 15629 | Bounded version of inex1 4168. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
| Theorem | bdinex2 15630 | Bounded version of inex2 4169. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
| Theorem | bdinex1g 15631 | Bounded version of inex1g 4170. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
| Theorem | bdssex 15632 | Bounded version of ssex 4171. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐴 & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | bdssexi 15633 | Bounded version of ssexi 4172. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐴 & ⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | bdssexg 15634 | Bounded version of ssexg 4173. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐴 ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | bdssexd 15635 | Bounded version of ssexd 4174. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ BOUNDED 𝐴 ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | bdrabexg 15636* | Bounded version of rabexg 4177. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝜑 & ⊢ BOUNDED 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | bj-inex 15637 | The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) | ||
| Theorem | bj-intexr 15638 | intexr 4184 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) | ||
| Theorem | bj-intnexr 15639 | intnexr 4185 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) | ||
| Theorem | bj-zfpair2 15640 | Proof of zfpair2 4244 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | bj-prexg 15641 | Proof of prexg 4245 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
| Theorem | bj-snexg 15642 | snexg 4218 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | bj-snex 15643 | snex 4219 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ V | ||
| Theorem | bj-sels 15644* | If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | bj-axun2 15645* | axun2 4471 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
| Theorem | bj-uniex2 15646* | uniex2 4472 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
| Theorem | bj-uniex 15647 | uniex 4473 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
| Theorem | bj-uniexg 15648 | uniexg 4475 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
| Theorem | bj-unex 15649 | unex 4477 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
| Theorem | bdunexb 15650 | Bounded version of unexb 4478. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝐵 ⇒ ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | bj-unexg 15651 | unexg 4479 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | bj-sucexg 15652 | sucexg 4535 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
| Theorem | bj-sucex 15653 | sucex 4536 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
| Axiom | ax-bj-d0cl 15654 | Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ DECID 𝜑 | ||
| Theorem | bj-d0clsepcl 15655 | Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
| ⊢ DECID 𝜑 | ||
| Syntax | wind 15656 | Syntax for inductive classes. |
| wff Ind 𝐴 | ||
| Definition | df-bj-ind 15657* | Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| ⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | bj-indsuc 15658 | A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
| ⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) | ||
| Theorem | bj-indeq 15659 | Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
| ⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) | ||
| Theorem | bj-bdind 15660 | Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
| ⊢ BOUNDED Ind 𝑥 | ||
| Theorem | bj-indint 15661* | The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
| ⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | ||
| Theorem | bj-indind 15662* | If 𝐴 is inductive and 𝐵 is "inductive in 𝐴", then (𝐴 ∩ 𝐵) is inductive. (Contributed by BJ, 25-Oct-2020.) |
| ⊢ ((Ind 𝐴 ∧ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → Ind (𝐴 ∩ 𝐵)) | ||
| Theorem | bj-dfom 15663 | Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
| ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | ||
| Theorem | bj-omind 15664 | ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| ⊢ Ind ω | ||
| Theorem | bj-omssind 15665 | ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) | ||
| Theorem | bj-ssom 15666* | A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) | ||
| Theorem | bj-om 15667* | A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) | ||
| Theorem | bj-2inf 15668* | Two formulations of the axiom of infinity (see ax-infvn 15671 and bj-omex 15672) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) | ||
The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4631 and peano3 4633 already show this. In this section, we prove bj-peano2 15669 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms. | ||
| Theorem | bj-peano2 15669 | Constructive proof of peano2 4632. Temporary note: another possibility is to simply replace sucexg 4535 with bj-sucexg 15652 in the proof of peano2 4632. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
| Theorem | peano5set 15670* | Version of peano5 4635 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | ||
In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements. | ||
In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 15671) and deduce that the class ω of natural number ordinals is a set (bj-omex 15672). | ||
| Axiom | ax-infvn 15671* | Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4625) from which one then proves, using full separation, that the wanted set exists (omex 4630). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.) |
| ⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) | ||
| Theorem | bj-omex 15672 | Proof of omex 4630 from ax-infvn 15671. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ω ∈ V | ||
In this section, we give constructive proofs of two versions of Peano's fifth postulate. | ||
| Theorem | bdpeano5 15673* | Bounded version of peano5 4635. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐴 ⇒ ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
| Theorem | speano5 15674* | Version of peano5 4635 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers. | ||
| Theorem | findset 15675* | Bounded induction (principle of induction when 𝐴 is assumed to be a set) allowing a proof from basic constructive axioms. See find 4636 for a nonconstructive proof of the general case. See bdfind 15676 for a proof when 𝐴 is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | ||
| Theorem | bdfind 15676* | Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4636 for a nonconstructive proof of the general case. See findset 15675 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝐴 ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) | ||
| Theorem | bj-bdfindis 15677* | Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4637 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4637, finds2 4638, finds1 4639. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) | ||
| Theorem | bj-bdfindisg 15678* | Version of bj-bdfindis 15677 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15677 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜏 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) | ||
| Theorem | bj-bdfindes 15679 | Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 15677 for explanations. From this version, it is easy to prove the bounded version of findes 4640. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) | ||
| Theorem | bj-nn0suc0 15680* | Constructive proof of a variant of nn0suc 4641. For a constructive proof of nn0suc 4641, see bj-nn0suc 15694. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | ||
| Theorem | bj-nntrans 15681 | A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | bj-nntrans2 15682 | A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → Tr 𝐴) | ||
| Theorem | bj-nnelirr 15683 | A natural number does not belong to itself. Version of elirr 4578 for natural numbers, which does not require ax-setind 4574. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | bj-nnen2lp 15684 |
A version of en2lp 4591 for natural numbers, which does not require
ax-setind 4574.
Note: using this theorem and bj-nnelirr 15683, one can remove dependency on ax-setind 4574 from nntri2 6561 and nndcel 6567; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
| Theorem | bj-peano4 15685 | Remove from peano4 4634 dependency on ax-setind 4574. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | bj-omtrans 15686 |
The set ω is transitive. A natural number is
included in
ω. Constructive proof of elnn 4643.
The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥 ⊆ 𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | ||
| Theorem | bj-omtrans2 15687 | The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ Tr ω | ||
| Theorem | bj-nnord 15688 | A natural number is an ordinal class. Constructive proof of nnord 4649. Can also be proved from bj-nnelon 15689 if the latter is proved from bj-omssonALT 15693. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
| Theorem | bj-nnelon 15689 | A natural number is an ordinal. Constructive proof of nnon 4647. Can also be proved from bj-omssonALT 15693. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | ||
| Theorem | bj-omord 15690 | The set ω is an ordinal class. Constructive proof of ordom 4644. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ Ord ω | ||
| Theorem | bj-omelon 15691 | The set ω is an ordinal. Constructive proof of omelon 4646. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ω ∈ On | ||
| Theorem | bj-omsson 15692 | Constructive proof of omsson 4650. See also bj-omssonALT 15693. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged. |
| ⊢ ω ⊆ On | ||
| Theorem | bj-omssonALT 15693 | Alternate proof of bj-omsson 15692. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ω ⊆ On | ||
| Theorem | bj-nn0suc 15694* | Proof of (biconditional form of) nn0suc 4641 from the core axioms of CZF. See also bj-nn0sucALT 15708. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
In this section, we add the axiom of set induction to the core axioms of CZF. | ||
In this section, we prove some variants of the axiom of set induction. | ||
| Theorem | setindft 15695* | Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) | ||
| Theorem | setindf 15696* | Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) | ||
| Theorem | setindis 15697* | Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) ⇒ ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) | ||
| Axiom | ax-bdsetind 15698* | Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.) |
| ⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) | ||
| Theorem | bdsetindis 15699* | Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 → 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜒 → 𝜑)) ⇒ ⊢ (∀𝑦(∀𝑧 ∈ 𝑦 𝜓 → 𝜒) → ∀𝑥𝜑) | ||
| Theorem | bj-inf2vnlem1 15700* | Lemma for bj-inf2vn 15704. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |