HomeHome Intuitionistic Logic Explorer
Theorem List (p. 157 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15601-15700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlgsquad 15601 The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.)
((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2))))
 
Theoremlgsquad2lem1 15602 Lemma for lgsquad2 15604. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → (𝐴 · 𝐵) = 𝑀)    &   (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))    &   (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad2lem2 15603* Lemma for lgsquad2 15604. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)    &   ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))    &   (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad2 15604 Extend lgsquad 15601 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑀)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ¬ 2 ∥ 𝑁)    &   (𝜑 → (𝑀 gcd 𝑁) = 1)       (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
 
Theoremlgsquad3 15605 Extend lgsquad2 15604 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
(((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
 
Theoremm1lgs 15606 The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
(𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
 
Theorem2lgslem1a1 15607* Lemma 1 for 2lgslem1a 15609. (Contributed by AV, 16-Jun-2021.)
((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
 
Theorem2lgslem1a2 15608 Lemma 2 for 2lgslem1a 15609. (Contributed by AV, 18-Jun-2021.)
((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
 
Theorem2lgslem1a 15609* Lemma 1 for 2lgslem1 15612. (Contributed by AV, 18-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
 
Theorem2lgslem1b 15610* Lemma 2 for 2lgslem1 15612. (Contributed by AV, 18-Jun-2021.)
𝐼 = (𝐴...𝐵)    &   𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))       𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
 
Theorem2lgslem1c 15611 Lemma 3 for 2lgslem1 15612. (Contributed by AV, 19-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
 
Theorem2lgslem1 15612* Lemma 1 for 2lgs 15625. (Contributed by AV, 19-Jun-2021.)
((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
 
Theorem2lgslem2 15613 Lemma 2 for 2lgs 15625. (Contributed by AV, 20-Jun-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ)
 
Theorem2lgslem3a 15614 Lemma for 2lgslem3a1 15618. (Contributed by AV, 14-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾))
 
Theorem2lgslem3b 15615 Lemma for 2lgslem3b1 15619. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1))
 
Theorem2lgslem3c 15616 Lemma for 2lgslem3c1 15620. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1))
 
Theorem2lgslem3d 15617 Lemma for 2lgslem3d1 15621. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))
 
Theorem2lgslem3a1 15618 Lemma 1 for 2lgslem3 15622. (Contributed by AV, 15-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
 
Theorem2lgslem3b1 15619 Lemma 2 for 2lgslem3 15622. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
 
Theorem2lgslem3c1 15620 Lemma 3 for 2lgslem3 15622. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
 
Theorem2lgslem3d1 15621 Lemma 4 for 2lgslem3 15622. (Contributed by AV, 15-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
 
Theorem2lgslem3 15622 Lemma 3 for 2lgs 15625. (Contributed by AV, 16-Jul-2021.)
𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))       ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
 
Theorem2lgs2 15623 The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.)
(2 /L 2) = 0
 
Theorem2lgslem4 15624 Lemma 4 for 2lgs 15625: special case of 2lgs 15625 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
 
Theorem2lgs 15625 The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 15538) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
(𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
 
Theorem2lgsoddprmlem1 15626 Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8)))
 
Theorem2lgsoddprmlem2 15627 Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
 
Theorem2lgsoddprmlem3a 15628 Lemma 1 for 2lgsoddprmlem3 15632. (Contributed by AV, 20-Jul-2021.)
(((1↑2) − 1) / 8) = 0
 
Theorem2lgsoddprmlem3b 15629 Lemma 2 for 2lgsoddprmlem3 15632. (Contributed by AV, 20-Jul-2021.)
(((3↑2) − 1) / 8) = 1
 
Theorem2lgsoddprmlem3c 15630 Lemma 3 for 2lgsoddprmlem3 15632. (Contributed by AV, 20-Jul-2021.)
(((5↑2) − 1) / 8) = 3
 
Theorem2lgsoddprmlem3d 15631 Lemma 4 for 2lgsoddprmlem3 15632. (Contributed by AV, 20-Jul-2021.)
(((7↑2) − 1) / 8) = (2 · 3)
 
Theorem2lgsoddprmlem3 15632 Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
 
Theorem2lgsoddprmlem4 15633 Lemma 4 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7}))
 
Theorem2lgsoddprm 15634 The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
 
11.3.7  All primes 4n+1 are the sum of two squares
 
Theorem2sqlem1 15635* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
 
Theorem2sqlem2 15636* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
 
Theoremmul2sq 15637 Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))       ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
 
Theorem2sqlem3 15638 Lemma for 2sqlem5 15640. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))    &   (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))    &   (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))       (𝜑𝑁𝑆)
 
Theorem2sqlem4 15639 Lemma for 2sqlem5 15640. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))    &   (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))       (𝜑𝑁𝑆)
 
Theorem2sqlem5 15640 Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)    &   (𝜑𝑃𝑆)       (𝜑𝑁𝑆)
 
Theorem2sqlem6 15641* Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))    &   (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)       (𝜑𝐴𝑆)
 
Theorem2sqlem7 15642* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}       𝑌 ⊆ (𝑆 ∩ ℕ)
 
Theorem2sqlem8a 15643* Lemma for 2sqlem8 15644. (Contributed by Mario Carneiro, 4-Jun-2016.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))    &   𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
 
Theorem2sqlem8 15644* Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑 → (𝐴 gcd 𝐵) = 1)    &   (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))    &   𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐸 = (𝐶 / (𝐶 gcd 𝐷))    &   𝐹 = (𝐷 / (𝐶 gcd 𝐷))       (𝜑𝑀𝑆)
 
Theorem2sqlem9 15645* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}    &   (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))    &   (𝜑𝑀𝑁)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑌)       (𝜑𝑀𝑆)
 
Theorem2sqlem10 15646* Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))    &   𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}       ((𝐴𝑌𝐵 ∈ ℕ ∧ 𝐵𝐴) → 𝐵𝑆)
 
PART 12  GRAPH THEORY
 
12.1  Vertices and edges
 
12.1.1  The edge function extractor for extensible structures
 
Syntaxcedgf 15647 Extend class notation with an edge function.
class .ef
 
Definitiondf-edgf 15648 Define the edge function (indexed edges) of a graph. (Contributed by AV, 18-Jan-2020.) Use its index-independent form edgfid 15649 instead. (New usage is discouraged.)
.ef = Slot 18
 
Theoremedgfid 15649 Utility theorem: index-independent form of df-edgf 15648. (Contributed by AV, 16-Nov-2021.)
.ef = Slot (.ef‘ndx)
 
Theoremedgfndx 15650 Index value of the df-edgf 15648 slot. (Contributed by AV, 13-Oct-2024.) (New usage is discouraged.)
(.ef‘ndx) = 18
 
Theoremedgfndxnn 15651 The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.)
(.ef‘ndx) ∈ ℕ
 
Theoremedgfndxid 15652 The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 28-Oct-2024.)
(𝐺𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
 
Theorembasendxltedgfndx 15653 The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 30-Oct-2024.)
(Base‘ndx) < (.ef‘ndx)
 
Theorembasendxnedgfndx 15654 The slots Base and .ef are different. (Contributed by AV, 21-Sep-2020.)
(Base‘ndx) ≠ (.ef‘ndx)
 
12.1.2  Vertices and indexed edges
 
12.1.2.1  Definitions and basic properties
 
Syntaxcvtx 15655 Extend class notation with the vertices of "graphs".
class Vtx
 
Syntaxciedg 15656 Extend class notation with the indexed edges of "graphs".
class iEdg
 
Definitiondf-vtx 15657 Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
 
Definitiondf-iedg 15658 Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
 
Theoremvtxvalg 15659 The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
(𝐺𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
 
Theoremiedgvalg 15660 The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.)
(𝐺𝑉 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
 
Theoremvtxex 15661 Applying the vertex function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
(𝐺𝑉 → (Vtx‘𝐺) ∈ V)
 
Theoremiedgex 15662 Applying the indexed edge function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
(𝐺𝑉 → (iEdg‘𝐺) ∈ V)
 
Theorem1vgrex 15663 A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
𝑉 = (Vtx‘𝐺)       (𝑁𝑉𝐺 ∈ V)
 
12.1.2.2  The vertices and edges of a graph represented as ordered pair
 
Theoremopvtxval 15664 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
(𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st𝐺))
 
Theoremopvtxfv 15665 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
 
Theoremopvtxov 15666 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (𝑉Vtx𝐸) = 𝑉)
 
Theoremopiedgval 15667 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.)
(𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd𝐺))
 
Theoremopiedgfv 15668 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
 
Theoremopiedgov 15669 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (𝑉iEdg𝐸) = 𝐸)
 
Theoremopvtxfvi 15670 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
𝑉 ∈ V    &   𝐸 ∈ V       (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
 
Theoremopiedgfvi 15671 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
𝑉 ∈ V    &   𝐸 ∈ V       (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸
 
12.1.2.3  The vertices and edges of a graph represented as extensible structure
 
Theoremfunvtxdm2domval 15672 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺))
 
Theoremfuniedgdm2domval 15673 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺))
 
Theoremfunvtxdm2vald 15674 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑𝐺𝑋)    &   (𝜑 → Fun (𝐺 ∖ {∅}))    &   (𝜑𝐴𝐵)    &   (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺)       (𝜑 → (Vtx‘𝐺) = (Base‘𝐺))
 
Theoremfuniedgdm2vald 15675 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 12-Dec-2025.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑𝐺𝑋)    &   (𝜑 → Fun (𝐺 ∖ {∅}))    &   (𝜑𝐴𝐵)    &   (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺)       (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺))
 
Theoremfunvtxval0d 15676 The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
𝑆 ∈ V    &   (𝜑𝐺𝑉)    &   (𝜑 → Fun (𝐺 ∖ {∅}))    &   (𝜑𝑆 ≠ (Base‘ndx))    &   (𝜑 → {(Base‘ndx), 𝑆} ⊆ dom 𝐺)       (𝜑 → (Vtx‘𝐺) = (Base‘𝐺))
 
Theorembasvtxval2dom 15677 The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑 → 2o ≼ dom 𝐺)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝐺)       (𝜑 → (Vtx‘𝐺) = 𝑉)
 
Theoremedgfiedgval2dom 15678 The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑 → 2o ≼ dom 𝐺)    &   (𝜑𝐸𝑌)    &   (𝜑 → ⟨(.ef‘ndx), 𝐸⟩ ∈ 𝐺)       (𝜑 → (iEdg‘𝐺) = 𝐸)
 
Theoremfunvtxvalg 15679 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺))
 
Theoremfuniedgvalg 15680 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺))
 
Theoremstruct2slots2dom 15681 There are at least two elements in an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → 2o ≼ dom 𝐺)
 
Theoremstructvtxval 15682 The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = 𝑉)
 
Theoremstructiedg0val 15683 The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
 
Theoremstructgr2slots2dom 15684 There are at least two elements in a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → 2o ≼ dom 𝐺)
 
Theoremstructgrssvtx 15685 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → (Vtx‘𝐺) = 𝑉)
 
Theoremstructgrssiedg 15686 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → (iEdg‘𝐺) = 𝐸)
 
Theoremstruct2grstrg 15687 A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → 𝐺 Struct ⟨(Base‘ndx), (.ef‘ndx)⟩)
 
Theoremstruct2grvtx 15688 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = 𝑉)
 
Theoremstruct2griedg 15689 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = 𝐸)
 
Theoremgropd 15690* If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 11-Oct-2020.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)       (𝜑[𝑉, 𝐸⟩ / 𝑔]𝜓)
 
Theoremgrstructd2dom 15691* If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)    &   (𝜑𝑆𝑋)    &   (𝜑 → Fun (𝑆 ∖ {∅}))    &   (𝜑 → 2o ≼ dom 𝑆)    &   (𝜑 → (Base‘𝑆) = 𝑉)    &   (𝜑 → (.ef‘𝑆) = 𝐸)       (𝜑[𝑆 / 𝑔]𝜓)
 
Theoremgropeld 15692* If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)       (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
 
Theoremgrstructeld2dom 15693* If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
(𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))    &   (𝜑𝑉𝑈)    &   (𝜑𝐸𝑊)    &   (𝜑𝑆𝑋)    &   (𝜑 → Fun (𝑆 ∖ {∅}))    &   (𝜑 → 2o ≼ dom 𝑆)    &   (𝜑 → (Base‘𝑆) = 𝑉)    &   (𝜑 → (.ef‘𝑆) = 𝐸)       (𝜑𝑆𝐶)
 
12.1.2.4  Degenerated cases of representations of graphs
 
Theoremvtxval0 15694 Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
(Vtx‘∅) = ∅
 
Theoremiedgval0 15695 Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
(iEdg‘∅) = ∅
 
Theoremvtxvalprc 15696 Degenerated case 4 for vertices: The set of vertices of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
(𝐶 ∉ V → (Vtx‘𝐶) = ∅)
 
Theoremiedgvalprc 15697 Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
(𝐶 ∉ V → (iEdg‘𝐶) = ∅)
 
12.1.3  Edges as range of the edge function
 
Syntaxcedg 15698 Extend class notation with the set of edges (of an undirected simple (hyper-/pseudo-)graph).
class Edg
 
Definitiondf-edg 15699 Define the class of edges of a graph, see also definition "E = E(G)" in section I.1 of [Bollobas] p. 1. This definition is very general: It defines edges of a class as the range of its edge function (which does not even need to be a function). Therefore, this definition could also be used for hypergraphs, pseudographs and multigraphs. In these cases, however, the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. In some cases, this is no problem, so theorems with Edg are meaningful nevertheless. Usually, however, this definition is used only for undirected simple (hyper-/pseudo-)graphs (with or without loops). (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.)
Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
 
Theoremedgvalg 15700 The edges of a graph. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) (Revised by AV, 8-Dec-2021.)
(𝐺𝑉 → (Edg‘𝐺) = ran (iEdg‘𝐺))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >