![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnabscl | GIF version |
Description: The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
nnabscl | ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zabscl 11127 | . . 3 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
2 | 1 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℤ) |
3 | 0z 9294 | . . . . 5 ⊢ 0 ∈ ℤ | |
4 | zapne 9357 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0)) | |
5 | 3, 4 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 # 0 ↔ 𝑁 ≠ 0)) |
6 | zcn 9288 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | absgt0ap 11140 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (𝑁 # 0 ↔ 0 < (abs‘𝑁))) | |
8 | 6, 7 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 # 0 ↔ 0 < (abs‘𝑁))) |
9 | 5, 8 | bitr3d 190 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ≠ 0 ↔ 0 < (abs‘𝑁))) |
10 | 9 | biimpa 296 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 0 < (abs‘𝑁)) |
11 | elnnz 9293 | . 2 ⊢ ((abs‘𝑁) ∈ ℕ ↔ ((abs‘𝑁) ∈ ℤ ∧ 0 < (abs‘𝑁))) | |
12 | 2, 10, 11 | sylanbrc 417 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 ≠ wne 2360 class class class wbr 4018 ‘cfv 5235 ℂcc 7839 0cc0 7841 < clt 8022 # cap 8568 ℕcn 8949 ℤcz 9283 abscabs 11038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 ax-caucvg 7961 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-frec 6416 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-n0 9207 df-z 9284 df-uz 9559 df-rp 9684 df-seqfrec 10477 df-exp 10551 df-cj 10883 df-re 10884 df-im 10885 df-rsqrt 11039 df-abs 11040 |
This theorem is referenced by: dvdsleabs 11883 gcdmultiplez 12054 dvdssq 12064 lcmval 12095 lcmcllem 12099 lcmgcd 12110 lcmdvds 12111 pc2dvds 12362 lgsval 14863 lgscllem 14866 lgsneg 14883 lgsdir 14894 lgsdilem2 14895 lgsdi 14896 lgsne0 14897 |
Copyright terms: Public domain | W3C validator |