| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccatval21sw | GIF version | ||
| Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.) |
| Ref | Expression |
|---|---|
| ccatval21sw | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl 11020 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
| 2 | 1 | nn0zd 9513 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ) |
| 3 | lennncl 11036 | . . . . . 6 ⊢ ((𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ) | |
| 4 | simpl 109 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ) | |
| 5 | nnz 9411 | . . . . . . . 8 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ) | |
| 6 | zaddcl 9432 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) | |
| 7 | 5, 6 | sylan2 286 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) |
| 8 | nngt0 9081 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → 0 < (♯‘𝐵)) | |
| 9 | 8 | adantl 277 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → 0 < (♯‘𝐵)) |
| 10 | nnre 9063 | . . . . . . . . 9 ⊢ ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ) | |
| 11 | zre 9396 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ) | |
| 12 | ltaddpos 8545 | . . . . . . . . 9 ⊢ (((♯‘𝐵) ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
| 13 | 10, 11, 12 | syl2anr 290 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (0 < (♯‘𝐵) ↔ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 14 | 9, 13 | mpbid 147 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))) |
| 15 | 4, 7, 14 | 3jca 1180 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 16 | 2, 3, 15 | syl2an 289 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ (𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 17 | 16 | 3impb 1202 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) |
| 18 | fzolb 10296 | . . . 4 ⊢ ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))) | |
| 19 | 17, 18 | sylibr 134 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
| 20 | ccatval2 11077 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) | |
| 21 | 19, 20 | syld3an3 1295 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘((♯‘𝐴) − (♯‘𝐴)))) |
| 22 | 1 | nn0cnd 9370 | . . . . 5 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ) |
| 23 | 22 | subidd 8391 | . . . 4 ⊢ (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) − (♯‘𝐴)) = 0) |
| 24 | 23 | fveq2d 5593 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
| 25 | 24 | 3ad2ant1 1021 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (𝐵‘((♯‘𝐴) − (♯‘𝐴))) = (𝐵‘0)) |
| 26 | 21, 25 | eqtrd 2239 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℝcr 7944 0cc0 7945 + caddc 7948 < clt 8127 − cmin 8263 ℕcn 9056 ℤcz 9392 ..^cfzo 10284 ♯chash 10942 Word cword 11016 ++ cconcat 11069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-1o 6515 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-fzo 10285 df-ihash 10943 df-word 11017 df-concat 11070 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |