![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6bbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
syl6bbr.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
syl6bbr | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bbr.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | syl6bbr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | syl6bb 195 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr4g 222 bibi2i 226 equsalh 1672 eueq3dc 2811 sbcel12g 2968 sbceqg 2969 sbcnel12g 2970 reldisj 3361 r19.3rm 3398 rabxp 4514 elrng 4668 iss 4801 eliniseg 4845 fcnvres 5242 dffv3g 5349 funimass4 5404 fndmdif 5457 fneqeql 5460 funimass3 5468 elrnrexdmb 5492 dff4im 5498 fconst4m 5572 elunirn 5599 riota1 5680 riota2df 5682 f1ocnvfv3 5695 eqfnov 5809 caoftrn 5938 mpoxopovel 6068 rntpos 6084 ordgt0ge1 6262 iinerm 6431 erinxp 6433 qliftfun 6441 mapdm0 6487 inl11 6865 ctssdclemr 6911 isomnimap 6921 ismkvmap 6940 pr2nelem 6958 indpi 7051 genpdflem 7216 genpdisj 7232 genpassl 7233 genpassu 7234 ltnqpri 7303 ltpopr 7304 ltexprlemm 7309 ltexprlemdisj 7315 ltexprlemloc 7316 ltrennb 7541 letri3 7716 letr 7718 ltneg 8091 leneg 8094 reapltxor 8217 apsym 8234 suprnubex 8569 suprleubex 8570 elnnnn0 8872 zrevaddcl 8956 znnsub 8957 znn0sub 8971 prime 9002 eluz2 9182 eluz2b1 9245 nn01to3 9259 qrevaddcl 9286 xrletri3 9429 xrletr 9432 iccid 9549 elicopnf 9593 fzsplit2 9671 fzsn 9687 fzpr 9698 uzsplit 9713 fvinim0ffz 9859 lt2sqi 10221 le2sqi 10222 abs00ap 10674 iooinsup 10885 mertenslem2 11144 gcddiv 11500 algcvgblem 11523 isprm3 11592 eltg2b 12005 discld 12087 opnssneib 12107 restbasg 12119 ssidcn 12160 cnptoprest2 12190 lmss 12196 txrest 12226 txlm 12229 imasnopn 12249 bldisj 12329 xmeter 12364 bl2ioo 12461 limcdifap 12512 bj-sseq 12580 nnti 12776 |
Copyright terms: Public domain | W3C validator |