ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodcld GIF version

Theorem zmodcld 10527
Description: Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
zmodcld.1 (𝜑𝐴 ∈ ℤ)
zmodcld.2 (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
zmodcld (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0)

Proof of Theorem zmodcld
StepHypRef Expression
1 zmodcld.1 . 2 (𝜑𝐴 ∈ ℤ)
2 zmodcld.2 . 2 (𝜑𝐵 ∈ ℕ)
3 zmodcl 10526 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  (class class class)co 5967  cn 9071  0cn0 9330  cz 9407   mod cmo 10504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-q 9776  df-rp 9811  df-fl 10450  df-mod 10505
This theorem is referenced by:  addmodlteq  10580  modfsummodlemstep  11883  dvdsdc  12224  bitsmod  12382  bitsinv1lem  12387  bezoutlemnewy  12432  bezoutlemstep  12433  eucalgval2  12490  eucalglt  12494  eulerthlema  12667  odzdvds  12683  powm2modprm  12690  4sqlemafi  12833  4sqlemffi  12834  4sqleminfi  12835  4sqlem12  12840  lgslem1  15592  lgsval  15596  lgsfvalg  15597  lgsfcl2  15598  lgsval2lem  15602  lgsvalmod  15611  lgsdir2lem4  15623  lgsdir2lem5  15624  lgsdir2  15625  lgsprme0  15634  lgseisenlem1  15662  lgseisenlem2  15663  lgseisenlem3  15664  lgseisenlem4  15665  m1lgs  15677  2lgs  15696  2lgsoddprmlem2  15698  2lgsoddprm  15705
  Copyright terms: Public domain W3C validator