| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmodcld | GIF version | ||
| Description: Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| zmodcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| zmodcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| Ref | Expression |
|---|---|
| zmodcld | ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | zmodcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 3 | zmodcl 10526 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 (class class class)co 5967 ℕcn 9071 ℕ0cn0 9330 ℤcz 9407 mod cmo 10504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fl 10450 df-mod 10505 |
| This theorem is referenced by: addmodlteq 10580 modfsummodlemstep 11883 dvdsdc 12224 bitsmod 12382 bitsinv1lem 12387 bezoutlemnewy 12432 bezoutlemstep 12433 eucalgval2 12490 eucalglt 12494 eulerthlema 12667 odzdvds 12683 powm2modprm 12690 4sqlemafi 12833 4sqlemffi 12834 4sqleminfi 12835 4sqlem12 12840 lgslem1 15592 lgsval 15596 lgsfvalg 15597 lgsfcl2 15598 lgsval2lem 15602 lgsvalmod 15611 lgsdir2lem4 15623 lgsdir2lem5 15624 lgsdir2 15625 lgsprme0 15634 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgseisenlem4 15665 m1lgs 15677 2lgs 15696 2lgsoddprmlem2 15698 2lgsoddprm 15705 |
| Copyright terms: Public domain | W3C validator |