| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt4 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2lt4 | ⊢ 2 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lt3 12329 | . 2 ⊢ 2 < 3 | |
| 2 | 3lt4 12331 | . 2 ⊢ 3 < 4 | |
| 3 | 2re 12236 | . . 3 ⊢ 2 ∈ ℝ | |
| 4 | 3re 12242 | . . 3 ⊢ 3 ∈ ℝ | |
| 5 | 4re 12246 | . . 3 ⊢ 4 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11276 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 2 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 < clt 11184 2c2 12217 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 1lt4 12333 2lt5 12336 uzuzle24 12820 fz0to4untppr 13567 fzo0to42pr 13690 4bc2eq6 14270 sqrt2gt1lt2 15216 cos01bnd 16130 4sqlem12 16903 starvndxnplusgndx 17244 prdsvalstr 17391 pcoass 24900 pilem3 26339 ppiublem1 27089 bpos1 27170 2sqlem11 27316 2sqreultlem 27334 2sqreunnltlem 27337 usgrexmplef 29162 upgr4cycl4dv4e 30087 sqsscirc1 33871 iccioo01 37288 flt4lem7 42620 fmtno4prmfac 47546 sbgoldbalt 47755 usgrexmpl2lem 47990 usgrexmpl2nb2 47997 usgrexmpl2nb4 47999 usgrexmpl2trifr 48001 gpgprismgr4cycllem7 48064 gpgprismgr4cycllem10 48067 |
| Copyright terms: Public domain | W3C validator |