| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt4 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2lt4 | ⊢ 2 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lt3 12287 | . 2 ⊢ 2 < 3 | |
| 2 | 3lt4 12289 | . 2 ⊢ 3 < 4 | |
| 3 | 2re 12194 | . . 3 ⊢ 2 ∈ ℝ | |
| 4 | 3re 12200 | . . 3 ⊢ 3 ∈ ℝ | |
| 5 | 4re 12204 | . . 3 ⊢ 4 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11234 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 2 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5086 < clt 11141 2c2 12175 3c3 12176 4c4 12177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-2 12183 df-3 12184 df-4 12185 |
| This theorem is referenced by: 1lt4 12291 2lt5 12294 uzuzle24 12778 fz0to4untppr 13525 fzo0to42pr 13648 4bc2eq6 14231 sqrt2gt1lt2 15176 cos01bnd 16090 4sqlem12 16863 starvndxnplusgndx 17204 prdsvalstr 17351 pcoass 24946 pilem3 26385 ppiublem1 27135 bpos1 27216 2sqlem11 27362 2sqreultlem 27380 2sqreunnltlem 27383 usgrexmplef 29232 upgr4cycl4dv4e 30157 sqsscirc1 33913 iccioo01 37361 flt4lem7 42692 fmtno4prmfac 47603 sbgoldbalt 47812 usgrexmpl2lem 48057 usgrexmpl2nb2 48064 usgrexmpl2nb4 48066 usgrexmpl2trifr 48068 gpgprismgr4cycllem7 48132 gpgprismgr4cycllem10 48135 |
| Copyright terms: Public domain | W3C validator |