MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lt4 Structured version   Visualization version   GIF version

Theorem 2lt4 12415
Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
2lt4 2 < 4

Proof of Theorem 2lt4
StepHypRef Expression
1 2lt3 12412 . 2 2 < 3
2 3lt4 12414 . 2 3 < 4
3 2re 12314 . . 3 2 ∈ ℝ
4 3re 12320 . . 3 3 ∈ ℝ
5 4re 12324 . . 3 4 ∈ ℝ
63, 4, 5lttri 11361 . 2 ((2 < 3 ∧ 3 < 4) → 2 < 4)
71, 2, 6mp2an 692 1 2 < 4
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5119   < clt 11269  2c2 12295  3c3 12296  4c4 12297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-2 12303  df-3 12304  df-4 12305
This theorem is referenced by:  1lt4  12416  2lt5  12419  eluz4eluz2  12899  fz0to4untppr  13647  fzo0to42pr  13769  4bc2eq6  14347  sqrt2gt1lt2  15293  cos01bnd  16204  4sqlem12  16976  starvndxnplusgndx  17319  prdsvalstr  17466  pcoass  24975  pilem3  26415  ppiublem1  27165  bpos1  27246  2sqlem11  27392  2sqreultlem  27410  2sqreunnltlem  27413  usgrexmplef  29238  upgr4cycl4dv4e  30166  sqsscirc1  33939  iccioo01  37345  flt4lem7  42682  fmtno4prmfac  47586  sbgoldbalt  47795  usgrexmpl2lem  48030  usgrexmpl2nb2  48037  usgrexmpl2nb4  48039  usgrexmpl2trifr  48041  gpgprismgr4cycllem7  48100  gpgprismgr4cycllem10  48103
  Copyright terms: Public domain W3C validator