Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2lt4 | Structured version Visualization version GIF version |
Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
2lt4 | ⊢ 2 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt3 12225 | . 2 ⊢ 2 < 3 | |
2 | 3lt4 12227 | . 2 ⊢ 3 < 4 | |
3 | 2re 12127 | . . 3 ⊢ 2 ∈ ℝ | |
4 | 3re 12133 | . . 3 ⊢ 3 ∈ ℝ | |
5 | 4re 12137 | . . 3 ⊢ 4 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11181 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
7 | 1, 2, 6 | mp2an 689 | 1 ⊢ 2 < 4 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5087 < clt 11089 2c2 12108 3c3 12109 4c4 12110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-2 12116 df-3 12117 df-4 12118 |
This theorem is referenced by: 1lt4 12229 2lt5 12232 eluz4eluz2 12705 fz0to4untppr 13439 fzo0to42pr 13554 4bc2eq6 14123 sqrt2gt1lt2 15065 cos01bnd 15974 4sqlem12 16734 starvndxnplusgndx 17092 prdsvalstr 17240 cnfldfunALTOLD 20694 pcoass 24270 pilem3 25695 ppiublem1 26433 bpos1 26514 2sqlem11 26660 2sqreultlem 26678 2sqreunnltlem 26681 usgrexmplef 27762 upgr4cycl4dv4e 28685 sqsscirc1 31998 iccioo01 35570 hlhilsplusOLD 40178 flt4lem7 40712 fmtno4prmfac 45289 sbgoldbalt 45498 |
Copyright terms: Public domain | W3C validator |