| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lt4 | Structured version Visualization version GIF version | ||
| Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2lt4 | ⊢ 2 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lt3 12360 | . 2 ⊢ 2 < 3 | |
| 2 | 3lt4 12362 | . 2 ⊢ 3 < 4 | |
| 3 | 2re 12267 | . . 3 ⊢ 2 ∈ ℝ | |
| 4 | 3re 12273 | . . 3 ⊢ 3 ∈ ℝ | |
| 5 | 4re 12277 | . . 3 ⊢ 4 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11307 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 2 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 < clt 11215 2c2 12248 3c3 12249 4c4 12250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 df-4 12258 |
| This theorem is referenced by: 1lt4 12364 2lt5 12367 uzuzle24 12851 fz0to4untppr 13598 fzo0to42pr 13721 4bc2eq6 14301 sqrt2gt1lt2 15247 cos01bnd 16161 4sqlem12 16934 starvndxnplusgndx 17275 prdsvalstr 17422 pcoass 24931 pilem3 26370 ppiublem1 27120 bpos1 27201 2sqlem11 27347 2sqreultlem 27365 2sqreunnltlem 27368 usgrexmplef 29193 upgr4cycl4dv4e 30121 sqsscirc1 33905 iccioo01 37322 flt4lem7 42654 fmtno4prmfac 47577 sbgoldbalt 47786 usgrexmpl2lem 48021 usgrexmpl2nb2 48028 usgrexmpl2nb4 48030 usgrexmpl2trifr 48032 gpgprismgr4cycllem7 48095 gpgprismgr4cycllem10 48098 |
| Copyright terms: Public domain | W3C validator |