![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2tp1odd | Structured version Visualization version GIF version |
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2tp1odd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℤ) | |
2 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → (2 · 𝑘) = (2 · 𝐴)) | |
3 | 2 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)) |
4 | 3 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑘 = 𝐴 → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑘 = 𝐴) → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))) |
6 | eqidd 2741 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)) | |
7 | 1, 5, 6 | rspcedvd 3637 | . . . 4 ⊢ (𝐴 ∈ ℤ → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)) |
8 | 2z 12675 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 2 ∈ ℤ) |
10 | 9, 1 | zmulcld 12753 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (2 · 𝐴) ∈ ℤ) |
11 | 10 | peano2zd 12750 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) ∈ ℤ) |
12 | odd2np1 16389 | . . . . 5 ⊢ (((2 · 𝐴) + 1) ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))) |
14 | 7, 13 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ ℤ → ¬ 2 ∥ ((2 · 𝐴) + 1)) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ ((2 · 𝐴) + 1)) |
16 | breq2 5170 | . . 3 ⊢ (𝐵 = ((2 · 𝐴) + 1) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1))) | |
17 | 16 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1))) |
18 | 15, 17 | mtbird 325 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-dvds 16303 |
This theorem is referenced by: 2lgslem3b1 27463 2lgslem3c1 27464 limsup10exlem 45693 |
Copyright terms: Public domain | W3C validator |