![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2tp1odd | Structured version Visualization version GIF version |
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
Ref | Expression |
---|---|
2tp1odd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℤ) | |
2 | oveq2 6984 | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → (2 · 𝑘) = (2 · 𝐴)) | |
3 | 2 | oveq1d 6991 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)) |
4 | 3 | eqeq1d 2780 | . . . . . 6 ⊢ (𝑘 = 𝐴 → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))) |
5 | 4 | adantl 474 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑘 = 𝐴) → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))) |
6 | eqidd 2779 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)) | |
7 | 1, 5, 6 | rspcedvd 3542 | . . . 4 ⊢ (𝐴 ∈ ℤ → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)) |
8 | 2z 11827 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 2 ∈ ℤ) |
10 | 9, 1 | zmulcld 11906 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (2 · 𝐴) ∈ ℤ) |
11 | 10 | peano2zd 11903 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) ∈ ℤ) |
12 | odd2np1 15550 | . . . . 5 ⊢ (((2 · 𝐴) + 1) ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))) |
14 | 7, 13 | mpbird 249 | . . 3 ⊢ (𝐴 ∈ ℤ → ¬ 2 ∥ ((2 · 𝐴) + 1)) |
15 | 14 | adantr 473 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ ((2 · 𝐴) + 1)) |
16 | breq2 4933 | . . 3 ⊢ (𝐵 = ((2 · 𝐴) + 1) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1))) | |
17 | 16 | adantl 474 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1))) |
18 | 15, 17 | mtbird 317 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3089 class class class wbr 4929 (class class class)co 6976 1c1 10336 + caddc 10338 · cmul 10340 2c2 11495 ℤcz 11793 ∥ cdvds 15467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-n0 11708 df-z 11794 df-dvds 15468 |
This theorem is referenced by: 2lgslem3b1 25679 2lgslem3c1 25680 limsup10exlem 41490 |
Copyright terms: Public domain | W3C validator |