MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsucdiv2z Structured version   Visualization version   GIF version

Theorem mulsucdiv2z 16333
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsucdiv2z (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)

Proof of Theorem mulsucdiv2z
StepHypRef Expression
1 zeo 12681 . 2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 peano2z 12636 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
3 zmulcl 12644 . . . . . 6 (((𝑁 / 2) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)
42, 3sylan2 591 . . . . 5 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)
5 zcn 12596 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
62zcnd 12700 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
7 2cnne0 12455 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
9 div23 11924 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1)))
105, 6, 8, 9syl3anc 1368 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1)))
1110eleq1d 2810 . . . . . 6 (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ))
1211adantl 480 . . . . 5 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ))
134, 12mpbird 256 . . . 4 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
1413ex 411 . . 3 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
15 zmulcl 12644 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)
1615ancoms 457 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)
17 divass 11923 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2)))
185, 6, 8, 17syl3anc 1368 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2)))
1918eleq1d 2810 . . . . . 6 (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ))
2019adantl 480 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ))
2116, 20mpbird 256 . . . 4 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
2221ex 411 . . 3 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
2314, 22jaoi 855 . 2 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
241, 23mpcom 38 1 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145   / cdiv 11903  2c2 12300  cz 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592
This theorem is referenced by:  sqoddm1div8z  16334
  Copyright terms: Public domain W3C validator