MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsucdiv2z Structured version   Visualization version   GIF version

Theorem mulsucdiv2z 16387
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsucdiv2z (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)

Proof of Theorem mulsucdiv2z
StepHypRef Expression
1 zeo 12702 . 2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 peano2z 12656 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
3 zmulcl 12664 . . . . . 6 (((𝑁 / 2) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)
42, 3sylan2 593 . . . . 5 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)
5 zcn 12616 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
62zcnd 12721 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
7 2cnne0 12474 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
9 div23 11939 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1)))
105, 6, 8, 9syl3anc 1370 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1)))
1110eleq1d 2824 . . . . . 6 (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ))
1211adantl 481 . . . . 5 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ))
134, 12mpbird 257 . . . 4 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
1413ex 412 . . 3 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
15 zmulcl 12664 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)
1615ancoms 458 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)
17 divass 11938 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2)))
185, 6, 8, 17syl3anc 1370 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2)))
1918eleq1d 2824 . . . . . 6 (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ))
2019adantl 481 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ))
2116, 20mpbird 257 . . . 4 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
2221ex 412 . . 3 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
2314, 22jaoi 857 . 2 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
241, 23mpcom 38 1 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   / cdiv 11918  2c2 12319  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612
This theorem is referenced by:  sqoddm1div8z  16388
  Copyright terms: Public domain W3C validator