MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsucdiv2z Structured version   Visualization version   GIF version

Theorem mulsucdiv2z 16259
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsucdiv2z (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)

Proof of Theorem mulsucdiv2z
StepHypRef Expression
1 zeo 12554 . 2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 peano2z 12508 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
3 zmulcl 12516 . . . . . 6 (((𝑁 / 2) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)
42, 3sylan2 593 . . . . 5 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ)
5 zcn 12468 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
62zcnd 12573 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
7 2cnne0 12325 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
9 div23 11790 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1)))
105, 6, 8, 9syl3anc 1373 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = ((𝑁 / 2) · (𝑁 + 1)))
1110eleq1d 2816 . . . . . 6 (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ))
1211adantl 481 . . . . 5 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ ((𝑁 / 2) · (𝑁 + 1)) ∈ ℤ))
134, 12mpbird 257 . . . 4 (((𝑁 / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
1413ex 412 . . 3 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
15 zmulcl 12516 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)
1615ancoms 458 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ)
17 divass 11789 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2)))
185, 6, 8, 17syl3anc 1373 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) = (𝑁 · ((𝑁 + 1) / 2)))
1918eleq1d 2816 . . . . . 6 (𝑁 ∈ ℤ → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ))
2019adantl 481 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ ↔ (𝑁 · ((𝑁 + 1) / 2)) ∈ ℤ))
2116, 20mpbird 257 . . . 4 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
2221ex 412 . . 3 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
2314, 22jaoi 857 . 2 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ))
241, 23mpcom 38 1 (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   / cdiv 11769  2c2 12175  cz 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464
This theorem is referenced by:  sqoddm1div8z  16260
  Copyright terms: Public domain W3C validator