| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version | ||
| Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| 4ne0 | ⊢ 4 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12208 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnne0i 12165 | 1 ⊢ 4 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 0cc0 11006 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 |
| This theorem is referenced by: 8th4div3 12341 div4p1lem1div2 12376 fldiv4p1lem1div2 13739 fldiv4lem1div2uz2 13740 fldiv4lem1div2 13741 discr 14147 sqoddm1div8 14150 4bc2eq6 14236 bpoly3 15965 bpoly4 15966 flodddiv4 16326 flodddiv4lt 16328 flodddiv4t2lthalf 16329 6lcm4e12 16527 cphipval2 25168 4cphipval2 25169 minveclem3 25356 uniioombl 25517 sincos4thpi 26449 tan4thpi 26450 sincos6thpi 26452 heron 26775 quad2 26776 dcubic 26783 mcubic 26784 cubic 26786 dquartlem1 26788 dquartlem2 26789 dquart 26790 quart1cl 26791 quart1lem 26792 quart1 26793 quartlem4 26797 quart 26798 log2tlbnd 26882 bclbnd 27218 bposlem7 27228 bposlem8 27229 bposlem9 27230 gausslemma2dlem0d 27297 gausslemma2dlem3 27306 gausslemma2dlem4 27307 gausslemma2dlem5 27309 m1lgs 27326 2lgslem1a2 27328 2lgslem1 27332 2lgslem2 27333 2lgslem3a 27334 2lgslem3b 27335 2lgslem3c 27336 2lgslem3d 27337 pntibndlem2 27529 4ipval2 30688 ipidsq 30690 dipcl 30692 dipcj 30694 dip0r 30697 dipcn 30700 ip1ilem 30806 ipasslem10 30819 polid2i 31137 lnopeq0i 31987 lnophmlem2 31997 quad3d 32733 quad3 35714 flt4lem5e 42697 limclner 45697 stoweid 46109 wallispi2lem1 46117 stirlinglem3 46122 stirlinglem12 46131 stirlinglem13 46132 fouriersw 46277 modm1p1ne 47409 usgrexmpl2lem 48065 usgrexmpl2nb4 48074 pgnbgreunbgrlem2lem3 48155 |
| Copyright terms: Public domain | W3C validator |