| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version | ||
| Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| 4ne0 | ⊢ 4 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12211 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnne0i 12168 | 1 ⊢ 4 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 0cc0 11009 4c4 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 |
| This theorem is referenced by: 8th4div3 12344 div4p1lem1div2 12379 fldiv4p1lem1div2 13739 fldiv4lem1div2uz2 13740 fldiv4lem1div2 13741 discr 14147 sqoddm1div8 14150 4bc2eq6 14236 bpoly3 15965 bpoly4 15966 flodddiv4 16326 flodddiv4lt 16328 flodddiv4t2lthalf 16329 6lcm4e12 16527 cphipval2 25139 4cphipval2 25140 minveclem3 25327 uniioombl 25488 sincos4thpi 26420 tan4thpi 26421 sincos6thpi 26423 heron 26746 quad2 26747 dcubic 26754 mcubic 26755 cubic 26757 dquartlem1 26759 dquartlem2 26760 dquart 26761 quart1cl 26762 quart1lem 26763 quart1 26764 quartlem4 26768 quart 26769 log2tlbnd 26853 bclbnd 27189 bposlem7 27199 bposlem8 27200 bposlem9 27201 gausslemma2dlem0d 27268 gausslemma2dlem3 27277 gausslemma2dlem4 27278 gausslemma2dlem5 27280 m1lgs 27297 2lgslem1a2 27299 2lgslem1 27303 2lgslem2 27304 2lgslem3a 27305 2lgslem3b 27306 2lgslem3c 27307 2lgslem3d 27308 pntibndlem2 27500 4ipval2 30652 ipidsq 30654 dipcl 30656 dipcj 30658 dip0r 30661 dipcn 30664 ip1ilem 30770 ipasslem10 30783 polid2i 31101 lnopeq0i 31951 lnophmlem2 31961 quad3d 32693 quad3 35643 flt4lem5e 42629 limclner 45632 stoweid 46044 wallispi2lem1 46052 stirlinglem3 46057 stirlinglem12 46066 stirlinglem13 46067 fouriersw 46212 modm1p1ne 47354 usgrexmpl2lem 48010 usgrexmpl2nb4 48019 pgnbgreunbgrlem2lem3 48100 |
| Copyright terms: Public domain | W3C validator |