| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version | ||
| Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| 4ne0 | ⊢ 4 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12269 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnne0i 12226 | 1 ⊢ 4 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 0cc0 11068 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 |
| This theorem is referenced by: 8th4div3 12402 div4p1lem1div2 12437 fldiv4p1lem1div2 13797 fldiv4lem1div2uz2 13798 fldiv4lem1div2 13799 discr 14205 sqoddm1div8 14208 4bc2eq6 14294 bpoly3 16024 bpoly4 16025 flodddiv4 16385 flodddiv4lt 16387 flodddiv4t2lthalf 16388 6lcm4e12 16586 cphipval2 25141 4cphipval2 25142 minveclem3 25329 uniioombl 25490 sincos4thpi 26422 tan4thpi 26423 sincos6thpi 26425 heron 26748 quad2 26749 dcubic 26756 mcubic 26757 cubic 26759 dquartlem1 26761 dquartlem2 26762 dquart 26763 quart1cl 26764 quart1lem 26765 quart1 26766 quartlem4 26770 quart 26771 log2tlbnd 26855 bclbnd 27191 bposlem7 27201 bposlem8 27202 bposlem9 27203 gausslemma2dlem0d 27270 gausslemma2dlem3 27279 gausslemma2dlem4 27280 gausslemma2dlem5 27282 m1lgs 27299 2lgslem1a2 27301 2lgslem1 27305 2lgslem2 27306 2lgslem3a 27307 2lgslem3b 27308 2lgslem3c 27309 2lgslem3d 27310 pntibndlem2 27502 4ipval2 30637 ipidsq 30639 dipcl 30641 dipcj 30643 dip0r 30646 dipcn 30649 ip1ilem 30755 ipasslem10 30768 polid2i 31086 lnopeq0i 31936 lnophmlem2 31946 quad3d 32673 quad3 35657 flt4lem5e 42644 limclner 45649 stoweid 46061 wallispi2lem1 46069 stirlinglem3 46074 stirlinglem12 46083 stirlinglem13 46084 fouriersw 46229 modm1p1ne 47371 usgrexmpl2lem 48017 usgrexmpl2nb4 48026 pgnbgreunbgrlem2lem3 48106 |
| Copyright terms: Public domain | W3C validator |