| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version | ||
| Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| 4ne0 | ⊢ 4 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12245 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnne0i 12202 | 1 ⊢ 4 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 0cc0 11044 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 8th4div3 12378 div4p1lem1div2 12413 fldiv4p1lem1div2 13773 fldiv4lem1div2uz2 13774 fldiv4lem1div2 13775 discr 14181 sqoddm1div8 14184 4bc2eq6 14270 bpoly3 16000 bpoly4 16001 flodddiv4 16361 flodddiv4lt 16363 flodddiv4t2lthalf 16364 6lcm4e12 16562 cphipval2 25117 4cphipval2 25118 minveclem3 25305 uniioombl 25466 sincos4thpi 26398 tan4thpi 26399 sincos6thpi 26401 heron 26724 quad2 26725 dcubic 26732 mcubic 26733 cubic 26735 dquartlem1 26737 dquartlem2 26738 dquart 26739 quart1cl 26740 quart1lem 26741 quart1 26742 quartlem4 26746 quart 26747 log2tlbnd 26831 bclbnd 27167 bposlem7 27177 bposlem8 27178 bposlem9 27179 gausslemma2dlem0d 27246 gausslemma2dlem3 27255 gausslemma2dlem4 27256 gausslemma2dlem5 27258 m1lgs 27275 2lgslem1a2 27277 2lgslem1 27281 2lgslem2 27282 2lgslem3a 27283 2lgslem3b 27284 2lgslem3c 27285 2lgslem3d 27286 pntibndlem2 27478 4ipval2 30610 ipidsq 30612 dipcl 30614 dipcj 30616 dip0r 30619 dipcn 30622 ip1ilem 30728 ipasslem10 30741 polid2i 31059 lnopeq0i 31909 lnophmlem2 31919 quad3d 32646 quad3 35630 flt4lem5e 42617 limclner 45622 stoweid 46034 wallispi2lem1 46042 stirlinglem3 46047 stirlinglem12 46056 stirlinglem13 46057 fouriersw 46202 modm1p1ne 47344 usgrexmpl2lem 47990 usgrexmpl2nb4 47999 pgnbgreunbgrlem2lem3 48079 |
| Copyright terms: Public domain | W3C validator |