| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version | ||
| Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| 4ne0 | ⊢ 4 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12328 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnne0i 12285 | 1 ⊢ 4 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2933 0cc0 11134 4c4 12302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 |
| This theorem is referenced by: 8th4div3 12466 div4p1lem1div2 12501 fldiv4p1lem1div2 13857 fldiv4lem1div2uz2 13858 fldiv4lem1div2 13859 discr 14263 sqoddm1div8 14266 4bc2eq6 14352 bpoly3 16079 bpoly4 16080 flodddiv4 16439 flodddiv4lt 16441 flodddiv4t2lthalf 16442 6lcm4e12 16640 cphipval2 25198 4cphipval2 25199 minveclem3 25386 uniioombl 25547 sincos4thpi 26479 tan4thpi 26480 sincos6thpi 26482 heron 26805 quad2 26806 dcubic 26813 mcubic 26814 cubic 26816 dquartlem1 26818 dquartlem2 26819 dquart 26820 quart1cl 26821 quart1lem 26822 quart1 26823 quartlem4 26827 quart 26828 log2tlbnd 26912 bclbnd 27248 bposlem7 27258 bposlem8 27259 bposlem9 27260 gausslemma2dlem0d 27327 gausslemma2dlem3 27336 gausslemma2dlem4 27337 gausslemma2dlem5 27339 m1lgs 27356 2lgslem1a2 27358 2lgslem1 27362 2lgslem2 27363 2lgslem3a 27364 2lgslem3b 27365 2lgslem3c 27366 2lgslem3d 27367 pntibndlem2 27559 4ipval2 30694 ipidsq 30696 dipcl 30698 dipcj 30700 dip0r 30703 dipcn 30706 ip1ilem 30812 ipasslem10 30825 polid2i 31143 lnopeq0i 31993 lnophmlem2 32003 quad3d 32732 quad3 35697 flt4lem5e 42654 limclner 45660 stoweid 46072 wallispi2lem1 46080 stirlinglem3 46085 stirlinglem12 46094 stirlinglem13 46095 fouriersw 46240 usgrexmpl2lem 48010 usgrexmpl2nb4 48019 |
| Copyright terms: Public domain | W3C validator |