Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version |
Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
4ne0 | ⊢ 4 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 11987 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 12010 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ne0ii 11441 | 1 ⊢ 4 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2942 0cc0 10802 4c4 11960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 df-3 11967 df-4 11968 |
This theorem is referenced by: 8th4div3 12123 div4p1lem1div2 12158 fldiv4p1lem1div2 13483 fldiv4lem1div2uz2 13484 fldiv4lem1div2 13485 discr 13883 sqoddm1div8 13886 4bc2eq6 13971 bpoly3 15696 bpoly4 15697 flodddiv4 16050 flodddiv4lt 16052 flodddiv4t2lthalf 16053 6lcm4e12 16249 cphipval2 24310 4cphipval2 24311 minveclem3 24498 uniioombl 24658 sincos4thpi 25575 sincos6thpi 25577 heron 25893 quad2 25894 dcubic 25901 mcubic 25902 cubic 25904 dquartlem1 25906 dquartlem2 25907 dquart 25908 quart1cl 25909 quart1lem 25910 quart1 25911 quartlem4 25915 quart 25916 log2tlbnd 26000 bclbnd 26333 bposlem7 26343 bposlem8 26344 bposlem9 26345 gausslemma2dlem0d 26412 gausslemma2dlem3 26421 gausslemma2dlem4 26422 gausslemma2dlem5 26424 m1lgs 26441 2lgslem1a2 26443 2lgslem1 26447 2lgslem2 26448 2lgslem3a 26449 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 pntibndlem2 26644 4ipval2 28971 ipidsq 28973 dipcl 28975 dipcj 28977 dip0r 28980 dipcn 28983 ip1ilem 29089 ipasslem10 29102 polid2i 29420 lnopeq0i 30270 lnophmlem2 30280 quad3 33528 flt4lem5e 40409 limclner 43082 stoweid 43494 wallispi2lem1 43502 stirlinglem3 43507 stirlinglem12 43516 stirlinglem13 43517 fouriersw 43662 |
Copyright terms: Public domain | W3C validator |