Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version |
Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
4ne0 | ⊢ 4 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 12137 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 12160 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ne0ii 11591 | 1 ⊢ 4 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2941 0cc0 10951 4c4 12110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-2 12116 df-3 12117 df-4 12118 |
This theorem is referenced by: 8th4div3 12273 div4p1lem1div2 12308 fldiv4p1lem1div2 13635 fldiv4lem1div2uz2 13636 fldiv4lem1div2 13637 discr 14035 sqoddm1div8 14038 4bc2eq6 14123 bpoly3 15847 bpoly4 15848 flodddiv4 16201 flodddiv4lt 16203 flodddiv4t2lthalf 16204 6lcm4e12 16398 cphipval2 24488 4cphipval2 24489 minveclem3 24676 uniioombl 24836 sincos4thpi 25753 sincos6thpi 25755 heron 26071 quad2 26072 dcubic 26079 mcubic 26080 cubic 26082 dquartlem1 26084 dquartlem2 26085 dquart 26086 quart1cl 26087 quart1lem 26088 quart1 26089 quartlem4 26093 quart 26094 log2tlbnd 26178 bclbnd 26511 bposlem7 26521 bposlem8 26522 bposlem9 26523 gausslemma2dlem0d 26590 gausslemma2dlem3 26599 gausslemma2dlem4 26600 gausslemma2dlem5 26602 m1lgs 26619 2lgslem1a2 26621 2lgslem1 26625 2lgslem2 26626 2lgslem3a 26627 2lgslem3b 26628 2lgslem3c 26629 2lgslem3d 26630 pntibndlem2 26822 4ipval2 29206 ipidsq 29208 dipcl 29210 dipcj 29212 dip0r 29215 dipcn 29218 ip1ilem 29324 ipasslem10 29337 polid2i 29655 lnopeq0i 30505 lnophmlem2 30515 quad3 33767 flt4lem5e 40709 limclner 43442 stoweid 43854 wallispi2lem1 43862 stirlinglem3 43867 stirlinglem12 43876 stirlinglem13 43877 fouriersw 44022 |
Copyright terms: Public domain | W3C validator |