Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version |
Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
4ne0 | ⊢ 4 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 12066 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 12089 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ne0ii 11520 | 1 ⊢ 4 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 0cc0 10880 4c4 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-2 12045 df-3 12046 df-4 12047 |
This theorem is referenced by: 8th4div3 12202 div4p1lem1div2 12237 fldiv4p1lem1div2 13564 fldiv4lem1div2uz2 13565 fldiv4lem1div2 13566 discr 13964 sqoddm1div8 13967 4bc2eq6 14052 bpoly3 15777 bpoly4 15778 flodddiv4 16131 flodddiv4lt 16133 flodddiv4t2lthalf 16134 6lcm4e12 16330 cphipval2 24414 4cphipval2 24415 minveclem3 24602 uniioombl 24762 sincos4thpi 25679 sincos6thpi 25681 heron 25997 quad2 25998 dcubic 26005 mcubic 26006 cubic 26008 dquartlem1 26010 dquartlem2 26011 dquart 26012 quart1cl 26013 quart1lem 26014 quart1 26015 quartlem4 26019 quart 26020 log2tlbnd 26104 bclbnd 26437 bposlem7 26447 bposlem8 26448 bposlem9 26449 gausslemma2dlem0d 26516 gausslemma2dlem3 26525 gausslemma2dlem4 26526 gausslemma2dlem5 26528 m1lgs 26545 2lgslem1a2 26547 2lgslem1 26551 2lgslem2 26552 2lgslem3a 26553 2lgslem3b 26554 2lgslem3c 26555 2lgslem3d 26556 pntibndlem2 26748 4ipval2 29079 ipidsq 29081 dipcl 29083 dipcj 29085 dip0r 29088 dipcn 29091 ip1ilem 29197 ipasslem10 29210 polid2i 29528 lnopeq0i 30378 lnophmlem2 30388 quad3 33637 flt4lem5e 40500 limclner 43199 stoweid 43611 wallispi2lem1 43619 stirlinglem3 43624 stirlinglem12 43633 stirlinglem13 43634 fouriersw 43779 |
Copyright terms: Public domain | W3C validator |