| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version | ||
| Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| 4ne0 | ⊢ 4 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn 12245 | . 2 ⊢ 4 ∈ ℕ | |
| 2 | 1 | nnne0i 12202 | 1 ⊢ 4 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 0cc0 11044 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 8th4div3 12378 div4p1lem1div2 12413 fldiv4p1lem1div2 13773 fldiv4lem1div2uz2 13774 fldiv4lem1div2 13775 discr 14181 sqoddm1div8 14184 4bc2eq6 14270 bpoly3 16000 bpoly4 16001 flodddiv4 16361 flodddiv4lt 16363 flodddiv4t2lthalf 16364 6lcm4e12 16562 cphipval2 25174 4cphipval2 25175 minveclem3 25362 uniioombl 25523 sincos4thpi 26455 tan4thpi 26456 sincos6thpi 26458 heron 26781 quad2 26782 dcubic 26789 mcubic 26790 cubic 26792 dquartlem1 26794 dquartlem2 26795 dquart 26796 quart1cl 26797 quart1lem 26798 quart1 26799 quartlem4 26803 quart 26804 log2tlbnd 26888 bclbnd 27224 bposlem7 27234 bposlem8 27235 bposlem9 27236 gausslemma2dlem0d 27303 gausslemma2dlem3 27312 gausslemma2dlem4 27313 gausslemma2dlem5 27315 m1lgs 27332 2lgslem1a2 27334 2lgslem1 27338 2lgslem2 27339 2lgslem3a 27340 2lgslem3b 27341 2lgslem3c 27342 2lgslem3d 27343 pntibndlem2 27535 4ipval2 30687 ipidsq 30689 dipcl 30691 dipcj 30693 dip0r 30696 dipcn 30699 ip1ilem 30805 ipasslem10 30818 polid2i 31136 lnopeq0i 31986 lnophmlem2 31996 quad3d 32723 quad3 35650 flt4lem5e 42637 limclner 45642 stoweid 46054 wallispi2lem1 46062 stirlinglem3 46067 stirlinglem12 46076 stirlinglem13 46077 fouriersw 46222 modm1p1ne 47364 usgrexmpl2lem 48010 usgrexmpl2nb4 48019 pgnbgreunbgrlem2lem3 48099 |
| Copyright terms: Public domain | W3C validator |