![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version |
Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
4ne0 | ⊢ 4 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 12377 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 12400 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ne0ii 11826 | 1 ⊢ 4 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 0cc0 11184 4c4 12350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 df-4 12358 |
This theorem is referenced by: 8th4div3 12513 div4p1lem1div2 12548 fldiv4p1lem1div2 13886 fldiv4lem1div2uz2 13887 fldiv4lem1div2 13888 discr 14289 sqoddm1div8 14292 4bc2eq6 14378 bpoly3 16106 bpoly4 16107 flodddiv4 16461 flodddiv4lt 16463 flodddiv4t2lthalf 16464 6lcm4e12 16663 cphipval2 25294 4cphipval2 25295 minveclem3 25482 uniioombl 25643 sincos4thpi 26573 tan4thpi 26574 sincos6thpi 26576 heron 26899 quad2 26900 dcubic 26907 mcubic 26908 cubic 26910 dquartlem1 26912 dquartlem2 26913 dquart 26914 quart1cl 26915 quart1lem 26916 quart1 26917 quartlem4 26921 quart 26922 log2tlbnd 27006 bclbnd 27342 bposlem7 27352 bposlem8 27353 bposlem9 27354 gausslemma2dlem0d 27421 gausslemma2dlem3 27430 gausslemma2dlem4 27431 gausslemma2dlem5 27433 m1lgs 27450 2lgslem1a2 27452 2lgslem1 27456 2lgslem2 27457 2lgslem3a 27458 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 pntibndlem2 27653 4ipval2 30740 ipidsq 30742 dipcl 30744 dipcj 30746 dip0r 30749 dipcn 30752 ip1ilem 30858 ipasslem10 30871 polid2i 31189 lnopeq0i 32039 lnophmlem2 32049 quad3d 32757 quad3 35638 flt4lem5e 42611 limclner 45572 stoweid 45984 wallispi2lem1 45992 stirlinglem3 45997 stirlinglem12 46006 stirlinglem13 46007 fouriersw 46152 usgrexmpl2lem 47841 usgrexmpl2nb4 47850 |
Copyright terms: Public domain | W3C validator |