![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4ne0 | Structured version Visualization version GIF version |
Description: The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
4ne0 | ⊢ 4 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 12348 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 12371 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ne0ii 11797 | 1 ⊢ 4 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 0cc0 11153 4c4 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-2 12327 df-3 12328 df-4 12329 |
This theorem is referenced by: 8th4div3 12484 div4p1lem1div2 12519 fldiv4p1lem1div2 13872 fldiv4lem1div2uz2 13873 fldiv4lem1div2 13874 discr 14276 sqoddm1div8 14279 4bc2eq6 14365 bpoly3 16091 bpoly4 16092 flodddiv4 16449 flodddiv4lt 16451 flodddiv4t2lthalf 16452 6lcm4e12 16650 cphipval2 25289 4cphipval2 25290 minveclem3 25477 uniioombl 25638 sincos4thpi 26570 tan4thpi 26571 sincos6thpi 26573 heron 26896 quad2 26897 dcubic 26904 mcubic 26905 cubic 26907 dquartlem1 26909 dquartlem2 26910 dquart 26911 quart1cl 26912 quart1lem 26913 quart1 26914 quartlem4 26918 quart 26919 log2tlbnd 27003 bclbnd 27339 bposlem7 27349 bposlem8 27350 bposlem9 27351 gausslemma2dlem0d 27418 gausslemma2dlem3 27427 gausslemma2dlem4 27428 gausslemma2dlem5 27430 m1lgs 27447 2lgslem1a2 27449 2lgslem1 27453 2lgslem2 27454 2lgslem3a 27455 2lgslem3b 27456 2lgslem3c 27457 2lgslem3d 27458 pntibndlem2 27650 4ipval2 30737 ipidsq 30739 dipcl 30741 dipcj 30743 dip0r 30746 dipcn 30749 ip1ilem 30855 ipasslem10 30868 polid2i 31186 lnopeq0i 32036 lnophmlem2 32046 quad3d 32761 quad3 35655 flt4lem5e 42643 limclner 45607 stoweid 46019 wallispi2lem1 46027 stirlinglem3 46032 stirlinglem12 46041 stirlinglem13 46042 fouriersw 46187 usgrexmpl2lem 47921 usgrexmpl2nb4 47930 |
Copyright terms: Public domain | W3C validator |