![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ne0 | Structured version Visualization version GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12298 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 12323 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 11756 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 0cc0 11114 3c3 12274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-2 12281 df-3 12282 |
This theorem is referenced by: 8th4div3 12438 halfpm6th 12439 halfthird 12826 f1oun2prg 14874 01sqrexlem7 15201 caurcvgr 15626 bpoly2 16007 bpoly3 16008 bpoly4 16009 sin01bnd 16134 cos01bnd 16135 cos1bnd 16136 cos2bnd 16137 sin01gt0 16139 cos01gt0 16140 rpnnen2lem3 16165 rpnnen2lem11 16173 tangtx 26249 sincos6thpi 26259 sincos3rdpi 26260 pigt3 26261 pige3ALT 26263 2logb9irrALT 26537 1cubr 26581 dcubic1lem 26582 dcubic2 26583 dcubic1 26584 dcubic 26585 mcubic 26586 cubic2 26587 cubic 26588 quartlem3 26598 log2cnv 26683 log2tlbnd 26684 ppiub 26941 bclbnd 27017 bposlem6 27026 bposlem9 27029 usgrexmplef 28781 upgr4cycl4dv4e 29703 konigsbergiedgw 29766 konigsberglem1 29770 konigsberglem3 29772 konigsberglem5 29774 ex-lcm 29976 hgt750lem 33959 cusgracyclt3v 34443 sinccvglem 34953 mblfinlem3 36832 itg2addnclem2 36845 itg2addnclem3 36846 acos1half 41719 3cubeslem2 41727 lhe4.4ex1a 43392 stoweidlem11 45027 stoweidlem13 45029 stoweidlem26 45042 stoweidlem34 45050 stoweidlem42 45058 stoweidlem59 45075 stoweidlem62 45078 stoweid 45079 wallispilem4 45084 wallispi2lem1 45087 stirlinglem11 45100 fourierdlem87 45209 itcoval3 47440 sepfsepc 47649 |
Copyright terms: Public domain | W3C validator |