Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ne0 | Structured version Visualization version GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12036 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 12061 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 11494 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 0cc0 10855 3c3 12012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-2 12019 df-3 12020 |
This theorem is referenced by: 8th4div3 12176 halfpm6th 12177 halfthird 12562 f1oun2prg 14611 sqrlem7 14941 caurcvgr 15366 bpoly2 15748 bpoly3 15749 bpoly4 15750 sin01bnd 15875 cos01bnd 15876 cos1bnd 15877 cos2bnd 15878 sin01gt0 15880 cos01gt0 15881 rpnnen2lem3 15906 rpnnen2lem11 15914 tangtx 25643 sincos6thpi 25653 sincos3rdpi 25654 pigt3 25655 pige3ALT 25657 2logb9irrALT 25929 1cubr 25973 dcubic1lem 25974 dcubic2 25975 dcubic1 25976 dcubic 25977 mcubic 25978 cubic2 25979 cubic 25980 quartlem3 25990 log2cnv 26075 log2tlbnd 26076 ppiub 26333 bclbnd 26409 bposlem6 26418 bposlem9 26421 usgrexmplef 27607 upgr4cycl4dv4e 28528 konigsbergiedgw 28591 konigsberglem1 28595 konigsberglem3 28597 konigsberglem5 28599 ex-lcm 28801 hgt750lem 32610 cusgracyclt3v 33097 sinccvglem 33609 mblfinlem3 35795 itg2addnclem2 35808 itg2addnclem3 35809 acos1half 40150 3cubeslem2 40487 lhe4.4ex1a 41900 stoweidlem11 43506 stoweidlem13 43508 stoweidlem26 43521 stoweidlem34 43529 stoweidlem42 43537 stoweidlem59 43554 stoweidlem62 43557 stoweid 43558 wallispilem4 43563 wallispi2lem1 43566 stirlinglem11 43579 fourierdlem87 43688 itcoval3 45963 sepfsepc 46173 |
Copyright terms: Public domain | W3C validator |