Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ne0 | Structured version Visualization version GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12159 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 12184 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 11617 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2941 0cc0 10977 3c3 12135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-2 12142 df-3 12143 |
This theorem is referenced by: 8th4div3 12299 halfpm6th 12300 halfthird 12686 f1oun2prg 14730 sqrlem7 15060 caurcvgr 15485 bpoly2 15867 bpoly3 15868 bpoly4 15869 sin01bnd 15994 cos01bnd 15995 cos1bnd 15996 cos2bnd 15997 sin01gt0 15999 cos01gt0 16000 rpnnen2lem3 16025 rpnnen2lem11 16033 tangtx 25768 sincos6thpi 25778 sincos3rdpi 25779 pigt3 25780 pige3ALT 25782 2logb9irrALT 26054 1cubr 26098 dcubic1lem 26099 dcubic2 26100 dcubic1 26101 dcubic 26102 mcubic 26103 cubic2 26104 cubic 26105 quartlem3 26115 log2cnv 26200 log2tlbnd 26201 ppiub 26458 bclbnd 26534 bposlem6 26543 bposlem9 26546 usgrexmplef 27915 upgr4cycl4dv4e 28837 konigsbergiedgw 28900 konigsberglem1 28904 konigsberglem3 28906 konigsberglem5 28908 ex-lcm 29110 hgt750lem 32929 cusgracyclt3v 33415 sinccvglem 33927 mblfinlem3 35970 itg2addnclem2 35983 itg2addnclem3 35984 acos1half 40476 3cubeslem2 40818 lhe4.4ex1a 42318 stoweidlem11 43938 stoweidlem13 43940 stoweidlem26 43953 stoweidlem34 43961 stoweidlem42 43969 stoweidlem59 43986 stoweidlem62 43989 stoweid 43990 wallispilem4 43995 wallispi2lem1 43998 stirlinglem11 44011 fourierdlem87 44120 itcoval3 46427 sepfsepc 46637 |
Copyright terms: Public domain | W3C validator |