![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ne0 | Structured version Visualization version GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11523 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 11555 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 10979 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2967 0cc0 10337 3c3 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-po 5327 df-so 5328 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-2 11506 df-3 11507 |
This theorem is referenced by: 8th4div3 11670 halfpm6th 11671 halfthird 12059 f1oun2prg 14144 sqrlem7 14472 caurcvgr 14894 bpoly2 15274 bpoly3 15275 bpoly4 15276 sin01bnd 15401 cos01bnd 15402 cos1bnd 15403 cos2bnd 15404 sin01gt0 15406 cos01gt0 15407 rpnnen2lem3 15432 rpnnen2lem11 15440 tangtx 24797 sincos6thpi 24807 sincos3rdpi 24808 pigt3 24809 pige3ALT 24811 2logb9irrALT 25080 1cubr 25124 dcubic1lem 25125 dcubic2 25126 dcubic1 25127 dcubic 25128 mcubic 25129 cubic2 25130 cubic 25131 quartlem3 25141 log2cnv 25227 log2tlbnd 25228 ppiub 25485 bclbnd 25561 bposlem6 25570 bposlem9 25573 usgrexmplef 26747 upgr4cycl4dv4e 27717 konigsbergiedgw 27783 konigsberglem1 27787 konigsberglem3 27789 konigsberglem5 27791 ex-lcm 28018 hgt750lem 31570 sinccvglem 32435 mblfinlem3 34372 itg2addnclem2 34385 itg2addnclem3 34386 lhe4.4ex1a 40077 stoweidlem11 41728 stoweidlem13 41730 stoweidlem26 41743 stoweidlem34 41751 stoweidlem42 41759 stoweidlem59 41776 stoweidlem62 41779 stoweid 41780 wallispilem4 41785 wallispi2lem1 41788 stirlinglem11 41801 fourierdlem87 41910 |
Copyright terms: Public domain | W3C validator |