Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ne0 | Structured version Visualization version GIF version |
Description: The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
3ne0 | ⊢ 3 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12099 | . 2 ⊢ 3 ∈ ℝ | |
2 | 3pos 12124 | . 2 ⊢ 0 < 3 | |
3 | 1, 2 | gt0ne0ii 11557 | 1 ⊢ 3 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2941 0cc0 10917 3c3 12075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-2 12082 df-3 12083 |
This theorem is referenced by: 8th4div3 12239 halfpm6th 12240 halfthird 12626 f1oun2prg 14675 sqrlem7 15005 caurcvgr 15430 bpoly2 15812 bpoly3 15813 bpoly4 15814 sin01bnd 15939 cos01bnd 15940 cos1bnd 15941 cos2bnd 15942 sin01gt0 15944 cos01gt0 15945 rpnnen2lem3 15970 rpnnen2lem11 15978 tangtx 25707 sincos6thpi 25717 sincos3rdpi 25718 pigt3 25719 pige3ALT 25721 2logb9irrALT 25993 1cubr 26037 dcubic1lem 26038 dcubic2 26039 dcubic1 26040 dcubic 26041 mcubic 26042 cubic2 26043 cubic 26044 quartlem3 26054 log2cnv 26139 log2tlbnd 26140 ppiub 26397 bclbnd 26473 bposlem6 26482 bposlem9 26485 usgrexmplef 27671 upgr4cycl4dv4e 28594 konigsbergiedgw 28657 konigsberglem1 28661 konigsberglem3 28663 konigsberglem5 28665 ex-lcm 28867 hgt750lem 32676 cusgracyclt3v 33163 sinccvglem 33675 mblfinlem3 35860 itg2addnclem2 35873 itg2addnclem3 35874 acos1half 40212 3cubeslem2 40544 lhe4.4ex1a 41985 stoweidlem11 43601 stoweidlem13 43603 stoweidlem26 43616 stoweidlem34 43624 stoweidlem42 43632 stoweidlem59 43649 stoweidlem62 43652 stoweid 43653 wallispilem4 43658 wallispi2lem1 43661 stirlinglem11 43674 fourierdlem87 43783 itcoval3 46069 sepfsepc 46279 |
Copyright terms: Public domain | W3C validator |