| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackendofnn0 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at any nonnegative integer is an endofunction on the nonnegative integers. (Contributed by AV, 8-May-2024.) |
| Ref | Expression |
|---|---|
| ackendofnn0 | ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑥 = 0 → (Ack‘𝑥) = (Ack‘0)) | |
| 2 | 1 | feq1d 6633 | . 2 ⊢ (𝑥 = 0 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘0):ℕ0⟶ℕ0)) |
| 3 | fveq2 6822 | . . 3 ⊢ (𝑥 = 𝑦 → (Ack‘𝑥) = (Ack‘𝑦)) | |
| 4 | 3 | feq1d 6633 | . 2 ⊢ (𝑥 = 𝑦 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘𝑦):ℕ0⟶ℕ0)) |
| 5 | fveq2 6822 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (Ack‘𝑥) = (Ack‘(𝑦 + 1))) | |
| 6 | 5 | feq1d 6633 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0)) |
| 7 | fveq2 6822 | . . 3 ⊢ (𝑥 = 𝑀 → (Ack‘𝑥) = (Ack‘𝑀)) | |
| 8 | 7 | feq1d 6633 | . 2 ⊢ (𝑥 = 𝑀 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘𝑀):ℕ0⟶ℕ0)) |
| 9 | ackval0 48711 | . . 3 ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) | |
| 10 | peano2nn0 12418 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0) | |
| 11 | 9, 10 | fmpti 7045 | . 2 ⊢ (Ack‘0):ℕ0⟶ℕ0 |
| 12 | nn0ex 12384 | . . . . . . . 8 ⊢ ℕ0 ∈ V | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V) |
| 14 | simplr 768 | . . . . . . 7 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (Ack‘𝑦):ℕ0⟶ℕ0) | |
| 15 | 10 | adantl 481 | . . . . . . 7 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0) |
| 16 | 13, 14, 15 | itcovalendof 48700 | . . . . . 6 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → ((IterComp‘(Ack‘𝑦))‘(𝑛 + 1)):ℕ0⟶ℕ0) |
| 17 | 1nn0 12394 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 18 | ffvelcdm 7014 | . . . . . 6 ⊢ ((((IterComp‘(Ack‘𝑦))‘(𝑛 + 1)):ℕ0⟶ℕ0 ∧ 1 ∈ ℕ0) → (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1) ∈ ℕ0) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . . 5 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1) ∈ ℕ0) |
| 20 | eqid 2731 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)) | |
| 21 | 19, 20 | fmptd 7047 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)):ℕ0⟶ℕ0) |
| 22 | ackvalsuc1mpt 48709 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (Ack‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1))) | |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (Ack‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1))) |
| 24 | 23 | feq1d 6633 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → ((Ack‘(𝑦 + 1)):ℕ0⟶ℕ0 ↔ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)):ℕ0⟶ℕ0)) |
| 25 | 21, 24 | mpbird 257 | . . 3 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0) |
| 26 | 25 | ex 412 | . 2 ⊢ (𝑦 ∈ ℕ0 → ((Ack‘𝑦):ℕ0⟶ℕ0 → (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0)) |
| 27 | 2, 4, 6, 8, 11, 26 | nn0ind 12565 | 1 ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 ℕ0cn0 12378 IterCompcitco 48688 Ackcack 48689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-itco 48690 df-ack 48691 |
| This theorem is referenced by: ackfnnn0 48716 ackvalsucsucval 48719 |
| Copyright terms: Public domain | W3C validator |