Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackendofnn0 | Structured version Visualization version GIF version |
Description: The Ackermann function at any nonnegative integer is an endofunction on the nonnegative integers. (Contributed by AV, 8-May-2024.) |
Ref | Expression |
---|---|
ackendofnn0 | ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6658 | . . 3 ⊢ (𝑥 = 0 → (Ack‘𝑥) = (Ack‘0)) | |
2 | 1 | feq1d 6483 | . 2 ⊢ (𝑥 = 0 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘0):ℕ0⟶ℕ0)) |
3 | fveq2 6658 | . . 3 ⊢ (𝑥 = 𝑦 → (Ack‘𝑥) = (Ack‘𝑦)) | |
4 | 3 | feq1d 6483 | . 2 ⊢ (𝑥 = 𝑦 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘𝑦):ℕ0⟶ℕ0)) |
5 | fveq2 6658 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (Ack‘𝑥) = (Ack‘(𝑦 + 1))) | |
6 | 5 | feq1d 6483 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0)) |
7 | fveq2 6658 | . . 3 ⊢ (𝑥 = 𝑀 → (Ack‘𝑥) = (Ack‘𝑀)) | |
8 | 7 | feq1d 6483 | . 2 ⊢ (𝑥 = 𝑀 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘𝑀):ℕ0⟶ℕ0)) |
9 | ackval0 45459 | . . 3 ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) | |
10 | peano2nn0 11974 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0) | |
11 | 9, 10 | fmpti 6867 | . 2 ⊢ (Ack‘0):ℕ0⟶ℕ0 |
12 | nn0ex 11940 | . . . . . . . 8 ⊢ ℕ0 ∈ V | |
13 | 12 | a1i 11 | . . . . . . 7 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V) |
14 | simplr 768 | . . . . . . 7 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (Ack‘𝑦):ℕ0⟶ℕ0) | |
15 | 10 | adantl 485 | . . . . . . 7 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0) |
16 | 13, 14, 15 | itcovalendof 45448 | . . . . . 6 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → ((IterComp‘(Ack‘𝑦))‘(𝑛 + 1)):ℕ0⟶ℕ0) |
17 | 1nn0 11950 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
18 | ffvelrn 6840 | . . . . . 6 ⊢ ((((IterComp‘(Ack‘𝑦))‘(𝑛 + 1)):ℕ0⟶ℕ0 ∧ 1 ∈ ℕ0) → (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1) ∈ ℕ0) | |
19 | 16, 17, 18 | sylancl 589 | . . . . 5 ⊢ (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1) ∈ ℕ0) |
20 | eqid 2758 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)) | |
21 | 19, 20 | fmptd 6869 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)):ℕ0⟶ℕ0) |
22 | ackvalsuc1mpt 45457 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (Ack‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1))) | |
23 | 22 | adantr 484 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (Ack‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1))) |
24 | 23 | feq1d 6483 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → ((Ack‘(𝑦 + 1)):ℕ0⟶ℕ0 ↔ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)):ℕ0⟶ℕ0)) |
25 | 21, 24 | mpbird 260 | . . 3 ⊢ ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0) |
26 | 25 | ex 416 | . 2 ⊢ (𝑦 ∈ ℕ0 → ((Ack‘𝑦):ℕ0⟶ℕ0 → (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0)) |
27 | 2, 4, 6, 8, 11, 26 | nn0ind 12116 | 1 ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ↦ cmpt 5112 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 ℕ0cn0 11934 IterCompcitco 45436 Ackcack 45437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-seq 13419 df-itco 45438 df-ack 45439 |
This theorem is referenced by: ackfnnn0 45464 ackvalsucsucval 45467 |
Copyright terms: Public domain | W3C validator |