Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackendofnn0 Structured version   Visualization version   GIF version

Theorem ackendofnn0 48644
Description: The Ackermann function at any nonnegative integer is an endofunction on the nonnegative integers. (Contributed by AV, 8-May-2024.)
Assertion
Ref Expression
ackendofnn0 (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0)

Proof of Theorem ackendofnn0
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . 3 (𝑥 = 0 → (Ack‘𝑥) = (Ack‘0))
21feq1d 6695 . 2 (𝑥 = 0 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘0):ℕ0⟶ℕ0))
3 fveq2 6881 . . 3 (𝑥 = 𝑦 → (Ack‘𝑥) = (Ack‘𝑦))
43feq1d 6695 . 2 (𝑥 = 𝑦 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘𝑦):ℕ0⟶ℕ0))
5 fveq2 6881 . . 3 (𝑥 = (𝑦 + 1) → (Ack‘𝑥) = (Ack‘(𝑦 + 1)))
65feq1d 6695 . 2 (𝑥 = (𝑦 + 1) → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0))
7 fveq2 6881 . . 3 (𝑥 = 𝑀 → (Ack‘𝑥) = (Ack‘𝑀))
87feq1d 6695 . 2 (𝑥 = 𝑀 → ((Ack‘𝑥):ℕ0⟶ℕ0 ↔ (Ack‘𝑀):ℕ0⟶ℕ0))
9 ackval0 48640 . . 3 (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1))
10 peano2nn0 12546 . . 3 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
119, 10fmpti 7107 . 2 (Ack‘0):ℕ0⟶ℕ0
12 nn0ex 12512 . . . . . . . 8 0 ∈ V
1312a1i 11 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → ℕ0 ∈ V)
14 simplr 768 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (Ack‘𝑦):ℕ0⟶ℕ0)
1510adantl 481 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
1613, 14, 15itcovalendof 48629 . . . . . 6 (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → ((IterComp‘(Ack‘𝑦))‘(𝑛 + 1)):ℕ0⟶ℕ0)
17 1nn0 12522 . . . . . 6 1 ∈ ℕ0
18 ffvelcdm 7076 . . . . . 6 ((((IterComp‘(Ack‘𝑦))‘(𝑛 + 1)):ℕ0⟶ℕ0 ∧ 1 ∈ ℕ0) → (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1) ∈ ℕ0)
1916, 17, 18sylancl 586 . . . . 5 (((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) ∧ 𝑛 ∈ ℕ0) → (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1) ∈ ℕ0)
20 eqid 2736 . . . . 5 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1))
2119, 20fmptd 7109 . . . 4 ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)):ℕ0⟶ℕ0)
22 ackvalsuc1mpt 48638 . . . . . 6 (𝑦 ∈ ℕ0 → (Ack‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)))
2322adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (Ack‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)))
2423feq1d 6695 . . . 4 ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → ((Ack‘(𝑦 + 1)):ℕ0⟶ℕ0 ↔ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑦))‘(𝑛 + 1))‘1)):ℕ0⟶ℕ0))
2521, 24mpbird 257 . . 3 ((𝑦 ∈ ℕ0 ∧ (Ack‘𝑦):ℕ0⟶ℕ0) → (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0)
2625ex 412 . 2 (𝑦 ∈ ℕ0 → ((Ack‘𝑦):ℕ0⟶ℕ0 → (Ack‘(𝑦 + 1)):ℕ0⟶ℕ0))
272, 4, 6, 8, 11, 26nn0ind 12693 1 (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506  IterCompcitco 48617  Ackcack 48618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-itco 48619  df-ack 48620
This theorem is referenced by:  ackfnnn0  48645  ackvalsucsucval  48648
  Copyright terms: Public domain W3C validator