MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl Structured version   Visualization version   GIF version

Theorem atantayl 26872
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl.1 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
Assertion
Ref Expression
atantayl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12772 . . 3 ℕ = (ℤ‘1)
2 1zzd 12500 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
3 ax-icn 11062 . . . 4 i ∈ ℂ
4 halfcl 12344 . . . 4 (i ∈ ℂ → (i / 2) ∈ ℂ)
53, 4mp1i 13 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i / 2) ∈ ℂ)
6 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
7 mulcl 11087 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
83, 6, 7sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i · 𝐴) ∈ ℂ)
98negcld 11456 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(i · 𝐴) ∈ ℂ)
108absnegd 15356 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘(i · 𝐴)))
11 absmul 15198 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
123, 6, 11sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
13 absi 15190 . . . . . . . . . . 11 (abs‘i) = 1
1413oveq1i 7356 . . . . . . . . . 10 ((abs‘i) · (abs‘𝐴)) = (1 · (abs‘𝐴))
15 abscl 15182 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1615adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
1716recnd 11137 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
1817mullidd 11127 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
1914, 18eqtrid 2778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘i) · (abs‘𝐴)) = (abs‘𝐴))
2010, 12, 193eqtrd 2770 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘𝐴))
21 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
2220, 21eqbrtrd 5113 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) < 1)
23 logtayl 26594 . . . . . . 7 ((-(i · 𝐴) ∈ ℂ ∧ (abs‘-(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
249, 22, 23syl2anc 584 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
25 ax-1cn 11061 . . . . . . . . 9 1 ∈ ℂ
26 subneg 11407 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2725, 8, 26sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2827fveq2d 6826 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − -(i · 𝐴))) = (log‘(1 + (i · 𝐴))))
2928negeqd 11351 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(log‘(1 − -(i · 𝐴))) = -(log‘(1 + (i · 𝐴))))
3024, 29breqtrd 5117 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 + (i · 𝐴))))
31 seqex 13907 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V
3231a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V)
3310, 22eqbrtrrd 5115 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) < 1)
34 logtayl 26594 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (abs‘(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
358, 33, 34syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
36 oveq2 7354 . . . . . . . . . . 11 (𝑛 = 𝑚 → (-(i · 𝐴)↑𝑛) = (-(i · 𝐴)↑𝑚))
37 id 22 . . . . . . . . . . 11 (𝑛 = 𝑚𝑛 = 𝑚)
3836, 37oveq12d 7364 . . . . . . . . . 10 (𝑛 = 𝑚 → ((-(i · 𝐴)↑𝑛) / 𝑛) = ((-(i · 𝐴)↑𝑚) / 𝑚))
39 eqid 2731 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))
40 ovex 7379 . . . . . . . . . 10 ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ V
4138, 39, 40fvmpt 6929 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
4241adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
43 nnnn0 12385 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
44 expcl 13983 . . . . . . . . . 10 ((-(i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
459, 43, 44syl2an 596 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
46 nncn 12130 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4746adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
48 nnne0 12156 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
4948adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5045, 47, 49divcld 11894 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
5142, 50eqeltrd 2831 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
521, 2, 51serf 13934 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
5352ffvelcdmda 7017 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
54 oveq2 7354 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((i · 𝐴)↑𝑛) = ((i · 𝐴)↑𝑚))
5554, 37oveq12d 7364 . . . . . . . . . 10 (𝑛 = 𝑚 → (((i · 𝐴)↑𝑛) / 𝑛) = (((i · 𝐴)↑𝑚) / 𝑚))
56 eqid 2731 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))
57 ovex 7379 . . . . . . . . . 10 (((i · 𝐴)↑𝑚) / 𝑚) ∈ V
5855, 56, 57fvmpt 6929 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
5958adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
60 expcl 13983 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((i · 𝐴)↑𝑚) ∈ ℂ)
618, 43, 60syl2an 596 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) ∈ ℂ)
6261, 47, 49divcld 11894 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
6359, 62eqeltrd 2831 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
641, 2, 63serf 13934 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
6564ffvelcdmda 7017 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
66 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6766, 1eleqtrdi 2841 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
68 simpl 482 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1))
69 elfznn 13450 . . . . . . 7 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
7068, 69, 51syl2an 596 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7168, 69, 63syl2an 596 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7238, 55oveq12d 7364 . . . . . . . . . 10 (𝑛 = 𝑚 → (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
73 eqid 2731 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))
74 ovex 7379 . . . . . . . . . 10 (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ V
7572, 73, 74fvmpt 6929 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7675adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7742, 59oveq12d 7364 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7876, 77eqtr4d 2769 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
7968, 69, 78syl2an 596 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
8067, 70, 71, 79sersub 13949 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))))‘𝑘) = ((seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) − (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘)))
811, 2, 30, 32, 35, 53, 65, 80climsub 15538 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))))
82 addcl 11085 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
8325, 8, 82sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ∈ ℂ)
84 bndatandm 26864 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)
85 atandm2 26812 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8684, 85sylib 218 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8786simp3d 1144 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ≠ 0)
8883, 87logcld 26504 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
89 subcl 11356 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
9025, 8, 89sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ∈ ℂ)
9186simp2d 1143 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ≠ 0)
9290, 91logcld 26504 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
9388, 92neg2subd 11486 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9481, 93breqtrd 5117 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9550, 62subcld 11469 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ ℂ)
9676, 95eqeltrd 2831 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) ∈ ℂ)
973a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → i ∈ ℂ)
98 negicn 11358 . . . . . . . . 9 -i ∈ ℂ
9943adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
100 expcl 13983 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-i↑𝑚) ∈ ℂ)
10198, 99, 100sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i↑𝑚) ∈ ℂ)
102 expcl 13983 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (i↑𝑚) ∈ ℂ)
1033, 99, 102sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i↑𝑚) ∈ ℂ)
104101, 103subcld 11469 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i↑𝑚) − (i↑𝑚)) ∈ ℂ)
105 2cnd 12200 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
106 2ne0 12226 . . . . . . . 8 2 ≠ 0
107106a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ≠ 0)
10897, 104, 105, 107div23d 11931 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · ((-i↑𝑚) − (i↑𝑚))) / 2) = ((i / 2) · ((-i↑𝑚) − (i↑𝑚))))
109108oveq1d 7361 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)))
1105adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i / 2) ∈ ℂ)
111 expcl 13983 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
1126, 43, 111syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) ∈ ℂ)
113112, 47, 49divcld 11894 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝐴𝑚) / 𝑚) ∈ ℂ)
114110, 104, 113mulassd 11132 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))))
115101, 103, 112subdird 11571 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
1166adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
117 mulneg1 11550 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
1183, 116, 117sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i · 𝐴) = -(i · 𝐴))
119118oveq1d 7361 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = (-(i · 𝐴)↑𝑚))
12098a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → -i ∈ ℂ)
121120, 116, 99mulexpd 14065 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
122119, 121eqtr3d 2768 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
12397, 116, 99mulexpd 14065 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) = ((i↑𝑚) · (𝐴𝑚)))
124122, 123oveq12d 7364 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
125115, 124eqtr4d 2769 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)))
126125oveq1d 7361 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚))
127104, 112, 47, 49divassd 11929 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)))
12845, 61, 47, 49divsubdird 11933 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
129126, 127, 1283eqtr3d 2774 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
130129oveq2d 7362 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
131109, 114, 1303eqtrd 2770 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
132 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑚 → (-i↑𝑛) = (-i↑𝑚))
133 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑚 → (i↑𝑛) = (i↑𝑚))
134132, 133oveq12d 7364 . . . . . . . . 9 (𝑛 = 𝑚 → ((-i↑𝑛) − (i↑𝑛)) = ((-i↑𝑚) − (i↑𝑚)))
135134oveq2d 7362 . . . . . . . 8 (𝑛 = 𝑚 → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · ((-i↑𝑚) − (i↑𝑚))))
136135oveq1d 7361 . . . . . . 7 (𝑛 = 𝑚 → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = ((i · ((-i↑𝑚) − (i↑𝑚))) / 2))
137 oveq2 7354 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
138137, 37oveq12d 7364 . . . . . . 7 (𝑛 = 𝑚 → ((𝐴𝑛) / 𝑛) = ((𝐴𝑚) / 𝑚))
139136, 138oveq12d 7364 . . . . . 6 (𝑛 = 𝑚 → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
140 atantayl.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
141 ovex 7379 . . . . . 6 (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) ∈ V
142139, 140, 141fvmpt 6929 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
143142adantl 481 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
14476oveq2d 7362 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
145131, 143, 1443eqtr4d 2776 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)))
1461, 2, 5, 94, 96, 145isermulc2 15562 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
147 atanval 26819 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
14884, 147syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
149146, 148breqtrrd 5119 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004  ici 11005   + caddc 11006   · cmul 11008   < clt 11143  cmin 11341  -cneg 11342   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  cuz 12729  ...cfz 13404  seqcseq 13905  cexp 13965  abscabs 15138  cli 15388  logclog 26488  arctancatan 26799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-tan 15975  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-cmp 23300  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-ulm 26311  df-log 26490  df-atan 26802
This theorem is referenced by:  atantayl2  26873
  Copyright terms: Public domain W3C validator