MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl Structured version   Visualization version   GIF version

Theorem atantayl 26998
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl.1 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
Assertion
Ref Expression
atantayl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12946 . . 3 ℕ = (ℤ‘1)
2 1zzd 12674 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ)
3 ax-icn 11243 . . . 4 i ∈ ℂ
4 halfcl 12518 . . . 4 (i ∈ ℂ → (i / 2) ∈ ℂ)
53, 4mp1i 13 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i / 2) ∈ ℂ)
6 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
7 mulcl 11268 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
83, 6, 7sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (i · 𝐴) ∈ ℂ)
98negcld 11634 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(i · 𝐴) ∈ ℂ)
108absnegd 15498 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘(i · 𝐴)))
11 absmul 15343 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
123, 6, 11sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
13 absi 15335 . . . . . . . . . . 11 (abs‘i) = 1
1413oveq1i 7458 . . . . . . . . . 10 ((abs‘i) · (abs‘𝐴)) = (1 · (abs‘𝐴))
15 abscl 15327 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1615adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
1716recnd 11318 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
1817mullidd 11308 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
1914, 18eqtrid 2792 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘i) · (abs‘𝐴)) = (abs‘𝐴))
2010, 12, 193eqtrd 2784 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) = (abs‘𝐴))
21 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
2220, 21eqbrtrd 5188 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘-(i · 𝐴)) < 1)
23 logtayl 26720 . . . . . . 7 ((-(i · 𝐴) ∈ ℂ ∧ (abs‘-(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
249, 22, 23syl2anc 583 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − -(i · 𝐴))))
25 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
26 subneg 11585 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2725, 8, 26sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
2827fveq2d 6924 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − -(i · 𝐴))) = (log‘(1 + (i · 𝐴))))
2928negeqd 11530 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → -(log‘(1 − -(i · 𝐴))) = -(log‘(1 + (i · 𝐴))))
3024, 29breqtrd 5192 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 + (i · 𝐴))))
31 seqex 14054 . . . . . 6 seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V
3231a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ∈ V)
3310, 22eqbrtrrd 5190 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(i · 𝐴)) < 1)
34 logtayl 26720 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ (abs‘(i · 𝐴)) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
358, 33, 34syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))) ⇝ -(log‘(1 − (i · 𝐴))))
36 oveq2 7456 . . . . . . . . . . 11 (𝑛 = 𝑚 → (-(i · 𝐴)↑𝑛) = (-(i · 𝐴)↑𝑚))
37 id 22 . . . . . . . . . . 11 (𝑛 = 𝑚𝑛 = 𝑚)
3836, 37oveq12d 7466 . . . . . . . . . 10 (𝑛 = 𝑚 → ((-(i · 𝐴)↑𝑛) / 𝑛) = ((-(i · 𝐴)↑𝑚) / 𝑚))
39 eqid 2740 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))
40 ovex 7481 . . . . . . . . . 10 ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ V
4138, 39, 40fvmpt 7029 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
4241adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = ((-(i · 𝐴)↑𝑚) / 𝑚))
43 nnnn0 12560 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
44 expcl 14130 . . . . . . . . . 10 ((-(i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
459, 43, 44syl2an 595 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) ∈ ℂ)
46 nncn 12301 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4746adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
48 nnne0 12327 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
4948adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5045, 47, 49divcld 12070 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
5142, 50eqeltrd 2844 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
521, 2, 51serf 14081 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
5352ffvelcdmda 7118 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
54 oveq2 7456 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((i · 𝐴)↑𝑛) = ((i · 𝐴)↑𝑚))
5554, 37oveq12d 7466 . . . . . . . . . 10 (𝑛 = 𝑚 → (((i · 𝐴)↑𝑛) / 𝑛) = (((i · 𝐴)↑𝑚) / 𝑚))
56 eqid 2740 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)) = (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))
57 ovex 7481 . . . . . . . . . 10 (((i · 𝐴)↑𝑚) / 𝑚) ∈ V
5855, 56, 57fvmpt 7029 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
5958adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) = (((i · 𝐴)↑𝑚) / 𝑚))
60 expcl 14130 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((i · 𝐴)↑𝑚) ∈ ℂ)
618, 43, 60syl2an 595 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) ∈ ℂ)
6261, 47, 49divcld 12070 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · 𝐴)↑𝑚) / 𝑚) ∈ ℂ)
6359, 62eqeltrd 2844 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
641, 2, 63serf 14081 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))):ℕ⟶ℂ)
6564ffvelcdmda 7118 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) ∈ ℂ)
66 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6766, 1eleqtrdi 2854 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
68 simpl 482 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1))
69 elfznn 13613 . . . . . . 7 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
7068, 69, 51syl2an 595 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7168, 69, 63syl2an 595 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚) ∈ ℂ)
7238, 55oveq12d 7466 . . . . . . . . . 10 (𝑛 = 𝑚 → (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
73 eqid 2740 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))
74 ovex 7481 . . . . . . . . . 10 (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ V
7572, 73, 74fvmpt 7029 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7675adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7742, 59oveq12d 7466 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
7876, 77eqtr4d 2783 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
7968, 69, 78syl2an 595 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) = (((𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛))‘𝑚) − ((𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛))‘𝑚)))
8067, 70, 71, 79sersub 14096 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛))))‘𝑘) = ((seq1( + , (𝑛 ∈ ℕ ↦ ((-(i · 𝐴)↑𝑛) / 𝑛)))‘𝑘) − (seq1( + , (𝑛 ∈ ℕ ↦ (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑘)))
811, 2, 30, 32, 35, 53, 65, 80climsub 15680 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))))
82 addcl 11266 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
8325, 8, 82sylancr 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ∈ ℂ)
84 bndatandm 26990 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)
85 atandm2 26938 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8684, 85sylib 218 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
8786simp3d 1144 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 + (i · 𝐴)) ≠ 0)
8883, 87logcld 26630 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
89 subcl 11535 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
9025, 8, 89sylancr 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ∈ ℂ)
9186simp2d 1143 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 − (i · 𝐴)) ≠ 0)
9290, 91logcld 26630 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
9388, 92neg2subd 11664 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (-(log‘(1 + (i · 𝐴))) − -(log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9481, 93breqtrd 5192 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))) ⇝ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
9550, 62subcld 11647 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)) ∈ ℂ)
9676, 95eqeltrd 2844 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚) ∈ ℂ)
973a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → i ∈ ℂ)
98 negicn 11537 . . . . . . . . 9 -i ∈ ℂ
9943adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
100 expcl 14130 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (-i↑𝑚) ∈ ℂ)
10198, 99, 100sylancr 586 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i↑𝑚) ∈ ℂ)
102 expcl 14130 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (i↑𝑚) ∈ ℂ)
1033, 99, 102sylancr 586 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i↑𝑚) ∈ ℂ)
104101, 103subcld 11647 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i↑𝑚) − (i↑𝑚)) ∈ ℂ)
105 2cnd 12371 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
106 2ne0 12397 . . . . . . . 8 2 ≠ 0
107106a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 2 ≠ 0)
10897, 104, 105, 107div23d 12107 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · ((-i↑𝑚) − (i↑𝑚))) / 2) = ((i / 2) · ((-i↑𝑚) − (i↑𝑚))))
109108oveq1d 7463 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)))
1105adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (i / 2) ∈ ℂ)
111 expcl 14130 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
1126, 43, 111syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐴𝑚) ∈ ℂ)
113112, 47, 49divcld 12070 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((𝐴𝑚) / 𝑚) ∈ ℂ)
114110, 104, 113mulassd 11313 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i / 2) · ((-i↑𝑚) − (i↑𝑚))) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))))
115101, 103, 112subdird 11747 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
1166adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
117 mulneg1 11726 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
1183, 116, 117sylancr 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-i · 𝐴) = -(i · 𝐴))
119118oveq1d 7463 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = (-(i · 𝐴)↑𝑚))
12098a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → -i ∈ ℂ)
121120, 116, 99mulexpd 14211 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
122119, 121eqtr3d 2782 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (-(i · 𝐴)↑𝑚) = ((-i↑𝑚) · (𝐴𝑚)))
12397, 116, 99mulexpd 14211 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i · 𝐴)↑𝑚) = ((i↑𝑚) · (𝐴𝑚)))
124122, 123oveq12d 7466 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) = (((-i↑𝑚) · (𝐴𝑚)) − ((i↑𝑚) · (𝐴𝑚))))
125115, 124eqtr4d 2783 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) = ((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)))
126125oveq1d 7463 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚))
127104, 112, 47, 49divassd 12105 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((((-i↑𝑚) − (i↑𝑚)) · (𝐴𝑚)) / 𝑚) = (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)))
12845, 61, 47, 49divsubdird 12109 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-(i · 𝐴)↑𝑚) − ((i · 𝐴)↑𝑚)) / 𝑚) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
129126, 127, 1283eqtr3d 2788 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚)) = (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚)))
130129oveq2d 7464 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · (((-i↑𝑚) − (i↑𝑚)) · ((𝐴𝑚) / 𝑚))) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
131109, 114, 1303eqtrd 2784 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
132 oveq2 7456 . . . . . . . . . 10 (𝑛 = 𝑚 → (-i↑𝑛) = (-i↑𝑚))
133 oveq2 7456 . . . . . . . . . 10 (𝑛 = 𝑚 → (i↑𝑛) = (i↑𝑚))
134132, 133oveq12d 7466 . . . . . . . . 9 (𝑛 = 𝑚 → ((-i↑𝑛) − (i↑𝑛)) = ((-i↑𝑚) − (i↑𝑚)))
135134oveq2d 7464 . . . . . . . 8 (𝑛 = 𝑚 → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · ((-i↑𝑚) − (i↑𝑚))))
136135oveq1d 7463 . . . . . . 7 (𝑛 = 𝑚 → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = ((i · ((-i↑𝑚) − (i↑𝑚))) / 2))
137 oveq2 7456 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
138137, 37oveq12d 7466 . . . . . . 7 (𝑛 = 𝑚 → ((𝐴𝑛) / 𝑛) = ((𝐴𝑚) / 𝑚))
139136, 138oveq12d 7466 . . . . . 6 (𝑛 = 𝑚 → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
140 atantayl.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
141 ovex 7481 . . . . . 6 (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)) ∈ V
142139, 140, 141fvmpt 7029 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
143142adantl 481 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = (((i · ((-i↑𝑚) − (i↑𝑚))) / 2) · ((𝐴𝑚) / 𝑚)))
14476oveq2d 7464 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)) = ((i / 2) · (((-(i · 𝐴)↑𝑚) / 𝑚) − (((i · 𝐴)↑𝑚) / 𝑚))))
145131, 143, 1443eqtr4d 2790 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) = ((i / 2) · ((𝑛 ∈ ℕ ↦ (((-(i · 𝐴)↑𝑛) / 𝑛) − (((i · 𝐴)↑𝑛) / 𝑛)))‘𝑚)))
1461, 2, 5, 94, 96, 145isermulc2 15706 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
147 atanval 26945 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
14884, 147syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
149146, 148breqtrrd 5194 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cuz 12903  ...cfz 13567  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  logclog 26614  arctancatan 26925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-atan 26928
This theorem is referenced by:  atantayl2  26999
  Copyright terms: Public domain W3C validator