MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanneg Structured version   Visualization version   GIF version

Theorem atanneg 26844
Description: The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanneg (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))

Proof of Theorem atanneg
StepHypRef Expression
1 ax-icn 11065 . . . . . . . . . 10 i ∈ ℂ
2 atandm2 26814 . . . . . . . . . . 11 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1145 . . . . . . . . . 10 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
4 mulneg2 11554 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
51, 3, 4sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
65oveq2d 7362 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴)))
7 ax-1cn 11064 . . . . . . . . 9 1 ∈ ℂ
8 mulcl 11090 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
91, 3, 8sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
10 subneg 11410 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
117, 9, 10sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
126, 11eqtrd 2766 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴)))
1312fveq2d 6826 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴))))
145oveq2d 7362 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
15 negsub 11409 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
167, 9, 15sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
1714, 16eqtrd 2766 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
1817fveq2d 6826 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴))))
1913, 18oveq12d 7364 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
20 subcl 11359 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
217, 9, 20sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
222simp2bi 1146 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2321, 22logcld 26506 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
24 addcl 11088 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
257, 9, 24sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
262simp3bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
2725, 26logcld 26506 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2823, 27negsubdi2d 11488 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
2919, 28eqtr4d 2769 . . . 4 (𝐴 ∈ dom arctan → ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴)))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3029oveq2d 7362 . . 3 (𝐴 ∈ dom arctan → ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))) = ((i / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
31 halfcl 12347 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
321, 31ax-mp 5 . . . 4 (i / 2) ∈ ℂ
3323, 27subcld 11472 . . . 4 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
34 mulneg2 11554 . . . 4 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → ((i / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3532, 33, 34sylancr 587 . . 3 (𝐴 ∈ dom arctan → ((i / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3630, 35eqtrd 2766 . 2 (𝐴 ∈ dom arctan → ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
37 atandmneg 26843 . . 3 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
38 atanval 26821 . . 3 (-𝐴 ∈ dom arctan → (arctan‘-𝐴) = ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))))
3937, 38syl 17 . 2 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))))
40 atanval 26821 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4140negeqd 11354 . 2 (𝐴 ∈ dom arctan → -(arctan‘𝐴) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4236, 39, 413eqtr4d 2776 1 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  dom cdm 5614  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  logclog 26490  arctancatan 26801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-atan 26804
This theorem is referenced by:  atan0  26845  cosatan  26858  atanbnd  26863
  Copyright terms: Public domain W3C validator