Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcctr | Structured version Visualization version GIF version |
Description: Value of the central binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
bcctr | ⊢ (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzctr 13350 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | |
2 | bcval2 14000 | . . 3 ⊢ (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)))) |
4 | nn0cn 12226 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
5 | 4 | 2timesd 12199 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁)) |
6 | 4, 4, 5 | mvrladdd 11371 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = 𝑁) |
7 | 6 | fveq2d 6772 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘((2 · 𝑁) − 𝑁)) = (!‘𝑁)) |
8 | 7 | oveq1d 7283 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁)) = ((!‘𝑁) · (!‘𝑁))) |
9 | 8 | oveq2d 7284 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((!‘(2 · 𝑁)) / ((!‘((2 · 𝑁) − 𝑁)) · (!‘𝑁))) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) |
10 | 3, 9 | eqtrd 2779 | 1 ⊢ (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 0cc0 10855 · cmul 10860 − cmin 11188 / cdiv 11615 2c2 12011 ℕ0cn0 12216 ...cfz 13221 !cfa 13968 Ccbc 13997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-bc 13998 |
This theorem is referenced by: bposlem3 26415 |
Copyright terms: Public domain | W3C validator |