MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbcctr Structured version   Visualization version   GIF version

Theorem pcbcctr 26111
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcbcctr ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem pcbcctr
StepHypRef Expression
1 2nn 11868 . . . . 5 2 ∈ ℕ
2 nnmulcl 11819 . . . . 5 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 690 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43adantr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
5 nnnn0 12062 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fzctr 13189 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
75, 6syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁)))
87adantr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁)))
9 simpr 488 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
10 pcbc 16416 . . 3 (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
114, 8, 9, 10syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
12 nncn 11803 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13122timesd 12038 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
1412, 12, 13mvrladdd 11210 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁)
1514fvoveq1d 7213 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
1615oveq1d 7206 . . . . . 6 (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
1716ad2antrr 726 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
18 nnre 11802 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1918ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
20 prmnn 16194 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2120adantl 485 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
22 elfznn 13106 . . . . . . . . . . 11 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
2322nnnn0d 12115 . . . . . . . . . 10 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0)
24 nnexpcl 13613 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
2521, 23, 24syl2an 599 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
2619, 25nndivred 11849 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2726flcld 13338 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
2827zcnd 12248 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
29282timesd 12038 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
3017, 29eqtr4d 2774 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
3130oveq2d 7207 . . 3 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3231sumeq2dv 15232 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3311, 32eqtrd 2771 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  cmin 11027   / cdiv 11454  cn 11795  2c2 11850  0cn0 12055  ...cfz 13060  cfl 13330  cexp 13600  Ccbc 13833  Σcsu 15214  cprime 16191   pCnt cpc 16352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-dvds 15779  df-gcd 16017  df-prm 16192  df-pc 16353
This theorem is referenced by:  bposlem1  26119  bposlem2  26120
  Copyright terms: Public domain W3C validator