![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcbcctr | Structured version Visualization version GIF version |
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcbcctr | ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11511 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | nnmulcl 11462 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ) | |
3 | 1, 2 | mpan 678 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ) |
4 | 3 | adantr 473 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ) |
5 | nnnn0 11713 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
6 | fzctr 12833 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁))) |
8 | 7 | adantr 473 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁))) |
9 | simpr 477 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
10 | pcbc 16090 | . . 3 ⊢ (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) | |
11 | 4, 8, 9, 10 | syl3anc 1352 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
12 | nncn 11446 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
13 | 12 | 2timesd 11688 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁)) |
14 | 12, 12, 13 | mvrladdd 10852 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁) |
15 | 14 | fvoveq1d 6996 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) = (⌊‘(𝑁 / (𝑃↑𝑘)))) |
16 | 15 | oveq1d 6989 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
17 | 16 | ad2antrr 714 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
18 | nnre 11445 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
19 | 18 | ad2antrr 714 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ) |
20 | prmnn 15872 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
21 | 20 | adantl 474 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
22 | elfznn 12750 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ) | |
23 | 22 | nnnn0d 11765 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0) |
24 | nnexpcl 13255 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℕ) | |
25 | 21, 23, 24 | syl2an 587 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℕ) |
26 | 19, 25 | nndivred 11492 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
27 | 26 | flcld 12981 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
28 | 27 | zcnd 11899 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
29 | 28 | 2timesd 11688 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
30 | 17, 29 | eqtr4d 2810 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) |
31 | 30 | oveq2d 6990 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
32 | 31 | sumeq2dv 14918 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
33 | 11, 32 | eqtrd 2807 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ‘cfv 6185 (class class class)co 6974 ℝcr 10332 0cc0 10333 1c1 10334 + caddc 10336 · cmul 10338 − cmin 10668 / cdiv 11096 ℕcn 11437 2c2 11493 ℕ0cn0 11705 ...cfz 12706 ⌊cfl 12973 ↑cexp 13242 Ccbc 13475 Σcsu 14901 ℙcprime 15869 pCnt cpc 16027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-inf 8700 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-q 12161 df-rp 12203 df-fz 12707 df-fzo 12848 df-fl 12975 df-mod 13051 df-seq 13183 df-exp 13243 df-fac 13447 df-bc 13476 df-hash 13504 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 df-sum 14902 df-dvds 15466 df-gcd 15702 df-prm 15870 df-pc 16028 |
This theorem is referenced by: bposlem1 25577 bposlem2 25578 |
Copyright terms: Public domain | W3C validator |