MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbcctr Structured version   Visualization version   GIF version

Theorem pcbcctr 27308
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcbcctr ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem pcbcctr
StepHypRef Expression
1 2nn 12339 . . . . 5 2 ∈ ℕ
2 nnmulcl 12290 . . . . 5 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 688 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43adantr 479 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
5 nnnn0 12533 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fzctr 13669 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
75, 6syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁)))
87adantr 479 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁)))
9 simpr 483 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
10 pcbc 16904 . . 3 (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
114, 8, 9, 10syl3anc 1368 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
12 nncn 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13122timesd 12509 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
1412, 12, 13mvrladdd 11679 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁)
1514fvoveq1d 7448 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
1615oveq1d 7441 . . . . . 6 (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
1716ad2antrr 724 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
18 nnre 12273 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1918ad2antrr 724 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
20 prmnn 16677 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2120adantl 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
22 elfznn 13586 . . . . . . . . . . 11 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
2322nnnn0d 12586 . . . . . . . . . 10 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0)
24 nnexpcl 14096 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
2521, 23, 24syl2an 594 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
2619, 25nndivred 12320 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2726flcld 13820 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
2827zcnd 12721 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
29282timesd 12509 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
3017, 29eqtr4d 2769 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
3130oveq2d 7442 . . 3 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3231sumeq2dv 15709 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3311, 32eqtrd 2766 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cfv 6556  (class class class)co 7426  cr 11159  0cc0 11160  1c1 11161   + caddc 11163   · cmul 11165  cmin 11496   / cdiv 11923  cn 12266  2c2 12321  0cn0 12526  ...cfz 13540  cfl 13812  cexp 14083  Ccbc 14321  Σcsu 15692  cprime 16674   pCnt cpc 16840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-inf2 9686  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-inf 9488  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-q 12987  df-rp 13031  df-fz 13541  df-fzo 13684  df-fl 13814  df-mod 13892  df-seq 14024  df-exp 14084  df-fac 14293  df-bc 14322  df-hash 14350  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-clim 15492  df-sum 15693  df-dvds 16259  df-gcd 16497  df-prm 16675  df-pc 16841
This theorem is referenced by:  bposlem1  27316  bposlem2  27317
  Copyright terms: Public domain W3C validator