| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcbcctr | Structured version Visualization version GIF version | ||
| Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcbcctr | ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12219 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | nnmulcl 12170 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ) |
| 5 | nnnn0 12409 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 6 | fzctr 13561 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁))) |
| 9 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
| 10 | pcbc 16830 | . . 3 ⊢ (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) | |
| 11 | 4, 8, 9, 10 | syl3anc 1373 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| 12 | nncn 12154 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 13 | 12 | 2timesd 12385 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 14 | 12, 12, 13 | mvrladdd 11551 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁) |
| 15 | 14 | fvoveq1d 7375 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) = (⌊‘(𝑁 / (𝑃↑𝑘)))) |
| 16 | 15 | oveq1d 7368 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 17 | 16 | ad2antrr 726 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 18 | nnre 12153 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ) |
| 20 | prmnn 16603 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 21 | 20 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 22 | elfznn 13474 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ) | |
| 23 | 22 | nnnn0d 12463 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0) |
| 24 | nnexpcl 13999 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℕ) | |
| 25 | 21, 23, 24 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℕ) |
| 26 | 19, 25 | nndivred 12200 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
| 27 | 26 | flcld 13720 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
| 28 | 27 | zcnd 12599 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
| 29 | 28 | 2timesd 12385 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 30 | 17, 29 | eqtr4d 2767 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 31 | 30 | oveq2d 7369 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| 32 | 31 | sumeq2dv 15627 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| 33 | 11, 32 | eqtrd 2764 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 / cdiv 11795 ℕcn 12146 2c2 12201 ℕ0cn0 12402 ...cfz 13428 ⌊cfl 13712 ↑cexp 13986 Ccbc 14227 Σcsu 15611 ℙcprime 16600 pCnt cpc 16766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-dvds 16182 df-gcd 16424 df-prm 16601 df-pc 16767 |
| This theorem is referenced by: bposlem1 27211 bposlem2 27212 |
| Copyright terms: Public domain | W3C validator |