MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbcctr Structured version   Visualization version   GIF version

Theorem pcbcctr 27321
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcbcctr ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem pcbcctr
StepHypRef Expression
1 2nn 12340 . . . . 5 2 ∈ ℕ
2 nnmulcl 12291 . . . . 5 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 690 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
5 nnnn0 12535 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fzctr 13681 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
75, 6syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁)))
87adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁)))
9 simpr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
10 pcbc 16939 . . 3 (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
114, 8, 9, 10syl3anc 1372 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
12 nncn 12275 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13122timesd 12511 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
1412, 12, 13mvrladdd 11677 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁)
1514fvoveq1d 7454 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
1615oveq1d 7447 . . . . . 6 (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
1716ad2antrr 726 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
18 nnre 12274 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1918ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
20 prmnn 16712 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2120adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
22 elfznn 13594 . . . . . . . . . . 11 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
2322nnnn0d 12589 . . . . . . . . . 10 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0)
24 nnexpcl 14116 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
2521, 23, 24syl2an 596 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
2619, 25nndivred 12321 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2726flcld 13839 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
2827zcnd 12725 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
29282timesd 12511 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
3017, 29eqtr4d 2779 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
3130oveq2d 7448 . . 3 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3231sumeq2dv 15739 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3311, 32eqtrd 2776 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  ...cfz 13548  cfl 13831  cexp 14103  Ccbc 14342  Σcsu 15723  cprime 16709   pCnt cpc 16875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-dvds 16292  df-gcd 16533  df-prm 16710  df-pc 16876
This theorem is referenced by:  bposlem1  27329  bposlem2  27330
  Copyright terms: Public domain W3C validator