Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcbcctr | Structured version Visualization version GIF version |
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcbcctr | ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12046 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | nnmulcl 11997 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ) | |
3 | 1, 2 | mpan 687 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ) |
5 | nnnn0 12240 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
6 | fzctr 13368 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁))) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁))) |
9 | simpr 485 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
10 | pcbc 16601 | . . 3 ⊢ (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) | |
11 | 4, 8, 9, 10 | syl3anc 1370 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
12 | nncn 11981 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
13 | 12 | 2timesd 12216 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁)) |
14 | 12, 12, 13 | mvrladdd 11388 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁) |
15 | 14 | fvoveq1d 7297 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) = (⌊‘(𝑁 / (𝑃↑𝑘)))) |
16 | 15 | oveq1d 7290 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
17 | 16 | ad2antrr 723 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
18 | nnre 11980 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
19 | 18 | ad2antrr 723 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ) |
20 | prmnn 16379 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
21 | 20 | adantl 482 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
22 | elfznn 13285 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ) | |
23 | 22 | nnnn0d 12293 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0) |
24 | nnexpcl 13795 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℕ) | |
25 | 21, 23, 24 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℕ) |
26 | 19, 25 | nndivred 12027 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
27 | 26 | flcld 13518 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
28 | 27 | zcnd 12427 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
29 | 28 | 2timesd 12216 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
30 | 17, 29 | eqtr4d 2781 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) |
31 | 30 | oveq2d 7291 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
32 | 31 | sumeq2dv 15415 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
33 | 11, 32 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ...cfz 13239 ⌊cfl 13510 ↑cexp 13782 Ccbc 14016 Σcsu 15397 ℙcprime 16376 pCnt cpc 16537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-gcd 16202 df-prm 16377 df-pc 16538 |
This theorem is referenced by: bposlem1 26432 bposlem2 26433 |
Copyright terms: Public domain | W3C validator |