MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbcctr Structured version   Visualization version   GIF version

Theorem pcbcctr 27244
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcbcctr ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem pcbcctr
StepHypRef Expression
1 2nn 12318 . . . . 5 2 ∈ ℕ
2 nnmulcl 12269 . . . . 5 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 690 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
5 nnnn0 12513 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fzctr 13662 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
75, 6syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁)))
87adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁)))
9 simpr 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
10 pcbc 16925 . . 3 (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
114, 8, 9, 10syl3anc 1373 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
12 nncn 12253 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13122timesd 12489 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
1412, 12, 13mvrladdd 11655 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁)
1514fvoveq1d 7432 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
1615oveq1d 7425 . . . . . 6 (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
1716ad2antrr 726 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
18 nnre 12252 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1918ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
20 prmnn 16698 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2120adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
22 elfznn 13575 . . . . . . . . . . 11 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
2322nnnn0d 12567 . . . . . . . . . 10 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0)
24 nnexpcl 14097 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
2521, 23, 24syl2an 596 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
2619, 25nndivred 12299 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2726flcld 13820 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
2827zcnd 12703 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
29282timesd 12489 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
3017, 29eqtr4d 2774 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
3130oveq2d 7426 . . 3 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3231sumeq2dv 15723 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3311, 32eqtrd 2771 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  ...cfz 13529  cfl 13812  cexp 14084  Ccbc 14325  Σcsu 15707  cprime 16695   pCnt cpc 16861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862
This theorem is referenced by:  bposlem1  27252  bposlem2  27253
  Copyright terms: Public domain W3C validator