| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcbcctr | Structured version Visualization version GIF version | ||
| Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcbcctr | ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12195 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | nnmulcl 12146 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ) |
| 5 | nnnn0 12385 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 6 | fzctr 13537 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁))) |
| 9 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
| 10 | pcbc 16809 | . . 3 ⊢ (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) | |
| 11 | 4, 8, 9, 10 | syl3anc 1373 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| 12 | nncn 12130 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 13 | 12 | 2timesd 12361 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 14 | 12, 12, 13 | mvrladdd 11527 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁) |
| 15 | 14 | fvoveq1d 7368 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) = (⌊‘(𝑁 / (𝑃↑𝑘)))) |
| 16 | 15 | oveq1d 7361 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 17 | 16 | ad2antrr 726 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 18 | nnre 12129 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ) |
| 20 | prmnn 16582 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 21 | 20 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 22 | elfznn 13450 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ) | |
| 23 | 22 | nnnn0d 12439 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0) |
| 24 | nnexpcl 13978 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℕ) | |
| 25 | 21, 23, 24 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℕ) |
| 26 | 19, 25 | nndivred 12176 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
| 27 | 26 | flcld 13699 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
| 28 | 27 | zcnd 12575 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
| 29 | 28 | 2timesd 12361 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))) = ((⌊‘(𝑁 / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 30 | 17, 29 | eqtr4d 2769 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) |
| 31 | 30 | oveq2d 7362 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| 32 | 31 | sumeq2dv 15606 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃↑𝑘))) + (⌊‘(𝑁 / (𝑃↑𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| 33 | 11, 32 | eqtrd 2766 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 − cmin 11341 / cdiv 11771 ℕcn 12122 2c2 12177 ℕ0cn0 12378 ...cfz 13404 ⌊cfl 13691 ↑cexp 13965 Ccbc 14206 Σcsu 15590 ℙcprime 16579 pCnt cpc 16745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-dvds 16161 df-gcd 16403 df-prm 16580 df-pc 16746 |
| This theorem is referenced by: bposlem1 27220 bposlem2 27221 |
| Copyright terms: Public domain | W3C validator |