MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbcctr Structured version   Visualization version   GIF version

Theorem pcbcctr 26534
Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcbcctr ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem pcbcctr
StepHypRef Expression
1 2nn 12156 . . . . 5 2 ∈ ℕ
2 nnmulcl 12107 . . . . 5 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 688 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43adantr 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
5 nnnn0 12350 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fzctr 13478 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
75, 6syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(2 · 𝑁)))
87adantr 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (0...(2 · 𝑁)))
9 simpr 486 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
10 pcbc 16703 . . 3 (((2 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ (0...(2 · 𝑁)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
114, 8, 9, 10syl3anc 1371 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))))
12 nncn 12091 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13122timesd 12326 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
1412, 12, 13mvrladdd 11498 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 𝑁) = 𝑁)
1514fvoveq1d 7368 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
1615oveq1d 7361 . . . . . 6 (𝑁 ∈ ℕ → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
1716ad2antrr 724 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
18 nnre 12090 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1918ad2antrr 724 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
20 prmnn 16481 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2120adantl 483 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
22 elfznn 13395 . . . . . . . . . . 11 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
2322nnnn0d 12403 . . . . . . . . . 10 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ0)
24 nnexpcl 13905 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
2521, 23, 24syl2an 597 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
2619, 25nndivred 12137 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2726flcld 13628 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
2827zcnd 12537 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
29282timesd 12326 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = ((⌊‘(𝑁 / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))))
3017, 29eqtr4d 2780 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
3130oveq2d 7362 . . 3 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3231sumeq2dv 15519 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − ((⌊‘(((2 · 𝑁) − 𝑁) / (𝑃𝑘))) + (⌊‘(𝑁 / (𝑃𝑘))))) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
3311, 32eqtrd 2777 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cfv 6488  (class class class)co 7346  cr 10980  0cc0 10981  1c1 10982   + caddc 10984   · cmul 10986  cmin 11315   / cdiv 11742  cn 12083  2c2 12138  0cn0 12343  ...cfz 13349  cfl 13620  cexp 13892  Ccbc 14126  Σcsu 15501  cprime 16478   pCnt cpc 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-2o 8377  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-sup 9308  df-inf 9309  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-z 12430  df-uz 12693  df-q 12799  df-rp 12841  df-fz 13350  df-fzo 13493  df-fl 13622  df-mod 13700  df-seq 13832  df-exp 13893  df-fac 14098  df-bc 14127  df-hash 14155  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-sum 15502  df-dvds 16068  df-gcd 16306  df-prm 16479  df-pc 16640
This theorem is referenced by:  bposlem1  26542  bposlem2  26543
  Copyright terms: Public domain W3C validator