![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bcrpcl | Structured version Visualization version GIF version |
Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 13504.) (Contributed by Mario Carneiro, 10-Mar-2014.) |
Ref | Expression |
---|---|
bcrpcl | ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcval2 13486 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) | |
2 | elfz3nn0 12823 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
3 | 2 | faccld 13465 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℕ) |
4 | fznn0sub 12761 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | |
5 | elfznn0 12822 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | |
6 | faccl 13464 | . . . . 5 ⊢ ((𝑁 − 𝐾) ∈ ℕ0 → (!‘(𝑁 − 𝐾)) ∈ ℕ) | |
7 | faccl 13464 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ) | |
8 | nnmulcl 11470 | . . . . 5 ⊢ (((!‘(𝑁 − 𝐾)) ∈ ℕ ∧ (!‘𝐾) ∈ ℕ) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) | |
9 | 6, 7, 8 | syl2an 587 | . . . 4 ⊢ (((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
10 | 4, 5, 9 | syl2anc 576 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
11 | nnrp 12223 | . . . 4 ⊢ ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+) | |
12 | nnrp 12223 | . . . 4 ⊢ (((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℝ+) | |
13 | rpdivcl 12237 | . . . 4 ⊢ (((!‘𝑁) ∈ ℝ+ ∧ ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℝ+) → ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ ℝ+) | |
14 | 11, 12, 13 | syl2an 587 | . . 3 ⊢ (((!‘𝑁) ∈ ℕ ∧ ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) → ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ ℝ+) |
15 | 3, 10, 14 | syl2anc 576 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) ∈ ℝ+) |
16 | 1, 15 | eqeltrd 2868 | 1 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ‘cfv 6193 (class class class)co 6982 0cc0 10341 · cmul 10346 − cmin 10676 / cdiv 11104 ℕcn 11445 ℕ0cn0 11713 ℝ+crp 12210 ...cfz 12714 !cfa 13454 Ccbc 13483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-n0 11714 df-z 11800 df-uz 12065 df-rp 12211 df-fz 12715 df-seq 13191 df-fac 13455 df-bc 13484 |
This theorem is referenced by: bcp1nk 13498 bcpasc 13502 bccl2 13504 bcm1n 30291 |
Copyright terms: Public domain | W3C validator |