![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cdj3lem2a | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 31188. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem2a | ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | cdj3lem2.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shseli 30063 | . . 3 ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢)) |
4 | cdj3lem2.3 | . . . . . . . . . 10 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
5 | 1, 2, 4 | cdj3lem2 31182 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) = 𝑣) |
6 | simp1 1137 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝑣 ∈ 𝐴) | |
7 | 5, 6 | eqeltrd 2839 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
8 | 7 | 3expa 1119 | . . . . . . 7 ⊢ (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
9 | fveq2 6838 | . . . . . . . 8 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) = (𝑆‘(𝑣 +ℎ 𝑢))) | |
10 | 9 | eleq1d 2823 | . . . . . . 7 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑆‘𝐶) ∈ 𝐴 ↔ (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴)) |
11 | 8, 10 | syl5ibr 246 | . . . . . 6 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴)) |
12 | 11 | expd 417 | . . . . 5 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → ((𝐴 ∩ 𝐵) = 0ℋ → (𝑆‘𝐶) ∈ 𝐴))) |
13 | 12 | com13 88 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴))) |
14 | 13 | rexlimdvv 3203 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴)) |
15 | 3, 14 | biimtrid 241 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑆‘𝐶) ∈ 𝐴)) |
16 | 15 | impcom 409 | 1 ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3072 ∩ cin 3908 ↦ cmpt 5187 ‘cfv 6492 ℩crio 7305 (class class class)co 7350 +ℎ cva 29667 Sℋ csh 29675 +ℋ cph 29678 0ℋc0h 29682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 ax-hilex 29746 ax-hfvadd 29747 ax-hvcom 29748 ax-hvass 29749 ax-hv0cl 29750 ax-hvaddid 29751 ax-hfvmul 29752 ax-hvmulid 29753 ax-hvmulass 29754 ax-hvdistr1 29755 ax-hvdistr2 29756 ax-hvmul0 29757 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5529 df-po 5543 df-so 5544 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-er 8582 df-en 8818 df-dom 8819 df-sdom 8820 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-grpo 29240 df-ablo 29292 df-hvsub 29718 df-sh 29954 df-ch0 30000 df-shs 30055 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |