HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2a Structured version   Visualization version   GIF version

Theorem cdj3lem2a 30197
Description: Lemma for cdj3i 30202. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2a ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑆𝐶) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2a
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . . 4 𝐴S
2 cdj3lem2.2 . . . 4 𝐵S
31, 2shseli 29077 . . 3 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢))
4 cdj3lem2.3 . . . . . . . . . 10 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem2 30196 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑣 + 𝑢)) = 𝑣)
6 simp1 1133 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → 𝑣𝐴)
75, 6eqeltrd 2912 . . . . . . . 8 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑣 + 𝑢)) ∈ 𝐴)
873expa 1115 . . . . . . 7 (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑣 + 𝑢)) ∈ 𝐴)
9 fveq2 6643 . . . . . . . 8 (𝐶 = (𝑣 + 𝑢) → (𝑆𝐶) = (𝑆‘(𝑣 + 𝑢)))
109eleq1d 2896 . . . . . . 7 (𝐶 = (𝑣 + 𝑢) → ((𝑆𝐶) ∈ 𝐴 ↔ (𝑆‘(𝑣 + 𝑢)) ∈ 𝐴))
118, 10syl5ibr 249 . . . . . 6 (𝐶 = (𝑣 + 𝑢) → (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑆𝐶) ∈ 𝐴))
1211expd 419 . . . . 5 (𝐶 = (𝑣 + 𝑢) → ((𝑣𝐴𝑢𝐵) → ((𝐴𝐵) = 0 → (𝑆𝐶) ∈ 𝐴)))
1312com13 88 . . . 4 ((𝐴𝐵) = 0 → ((𝑣𝐴𝑢𝐵) → (𝐶 = (𝑣 + 𝑢) → (𝑆𝐶) ∈ 𝐴)))
1413rexlimdvv 3279 . . 3 ((𝐴𝐵) = 0 → (∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢) → (𝑆𝐶) ∈ 𝐴))
153, 14syl5bi 245 . 2 ((𝐴𝐵) = 0 → (𝐶 ∈ (𝐴 + 𝐵) → (𝑆𝐶) ∈ 𝐴))
1615impcom 411 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑆𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wrex 3127  cin 3909  cmpt 5119  cfv 6328  crio 7087  (class class class)co 7130   + cva 28681   S csh 28689   + cph 28692  0c0h 28696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-hilex 28760  ax-hfvadd 28761  ax-hvcom 28762  ax-hvass 28763  ax-hv0cl 28764  ax-hvaddid 28765  ax-hfvmul 28766  ax-hvmulid 28767  ax-hvmulass 28768  ax-hvdistr1 28769  ax-hvdistr2 28770  ax-hvmul0 28771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-grpo 28254  df-ablo 28306  df-hvsub 28732  df-sh 28968  df-ch0 29014  df-shs 29069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator