| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32404. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem2a | ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdj3lem2.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 2 | cdj3lem2.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1, 2 | shseli 31279 | . . 3 ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢)) |
| 4 | cdj3lem2.3 | . . . . . . . . . 10 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 5 | 1, 2, 4 | cdj3lem2 32398 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) = 𝑣) |
| 6 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝑣 ∈ 𝐴) | |
| 7 | 5, 6 | eqeltrd 2828 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
| 8 | 7 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
| 9 | fveq2 6826 | . . . . . . . 8 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) = (𝑆‘(𝑣 +ℎ 𝑢))) | |
| 10 | 9 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑆‘𝐶) ∈ 𝐴 ↔ (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴)) |
| 11 | 8, 10 | imbitrrid 246 | . . . . . 6 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴)) |
| 12 | 11 | expd 415 | . . . . 5 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → ((𝐴 ∩ 𝐵) = 0ℋ → (𝑆‘𝐶) ∈ 𝐴))) |
| 13 | 12 | com13 88 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴))) |
| 14 | 13 | rexlimdvv 3185 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴)) |
| 15 | 3, 14 | biimtrid 242 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑆‘𝐶) ∈ 𝐴)) |
| 16 | 15 | impcom 407 | 1 ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3904 ↦ cmpt 5176 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 +ℎ cva 30883 Sℋ csh 30891 +ℋ cph 30894 0ℋc0h 30898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-hilex 30962 ax-hfvadd 30963 ax-hvcom 30964 ax-hvass 30965 ax-hv0cl 30966 ax-hvaddid 30967 ax-hfvmul 30968 ax-hvmulid 30969 ax-hvmulass 30970 ax-hvdistr1 30971 ax-hvdistr2 30972 ax-hvmul0 30973 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-grpo 30456 df-ablo 30508 df-hvsub 30934 df-sh 31170 df-ch0 31216 df-shs 31271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |