| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32442. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem2a | ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdj3lem2.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
| 2 | cdj3lem2.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1, 2 | shseli 31317 | . . 3 ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢)) |
| 4 | cdj3lem2.3 | . . . . . . . . . 10 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 5 | 1, 2, 4 | cdj3lem2 32436 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) = 𝑣) |
| 6 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝑣 ∈ 𝐴) | |
| 7 | 5, 6 | eqeltrd 2833 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
| 8 | 7 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
| 9 | fveq2 6831 | . . . . . . . 8 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) = (𝑆‘(𝑣 +ℎ 𝑢))) | |
| 10 | 9 | eleq1d 2818 | . . . . . . 7 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑆‘𝐶) ∈ 𝐴 ↔ (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴)) |
| 11 | 8, 10 | imbitrrid 246 | . . . . . 6 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴)) |
| 12 | 11 | expd 415 | . . . . 5 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → ((𝐴 ∩ 𝐵) = 0ℋ → (𝑆‘𝐶) ∈ 𝐴))) |
| 13 | 12 | com13 88 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴))) |
| 14 | 13 | rexlimdvv 3189 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴)) |
| 15 | 3, 14 | biimtrid 242 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑆‘𝐶) ∈ 𝐴)) |
| 16 | 15 | impcom 407 | 1 ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∩ cin 3897 ↦ cmpt 5176 ‘cfv 6489 ℩crio 7311 (class class class)co 7355 +ℎ cva 30921 Sℋ csh 30929 +ℋ cph 30932 0ℋc0h 30936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-hilex 31000 ax-hfvadd 31001 ax-hvcom 31002 ax-hvass 31003 ax-hv0cl 31004 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hvmulass 31008 ax-hvdistr1 31009 ax-hvdistr2 31010 ax-hvmul0 31011 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-grpo 30494 df-ablo 30546 df-hvsub 30972 df-sh 31208 df-ch0 31254 df-shs 31309 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |