Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cdj3lem2a | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 30852. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem2a | ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | cdj3lem2.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shseli 29727 | . . 3 ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢)) |
4 | cdj3lem2.3 | . . . . . . . . . 10 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
5 | 1, 2, 4 | cdj3lem2 30846 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) = 𝑣) |
6 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝑣 ∈ 𝐴) | |
7 | 5, 6 | eqeltrd 2837 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
8 | 7 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴) |
9 | fveq2 6804 | . . . . . . . 8 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) = (𝑆‘(𝑣 +ℎ 𝑢))) | |
10 | 9 | eleq1d 2821 | . . . . . . 7 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑆‘𝐶) ∈ 𝐴 ↔ (𝑆‘(𝑣 +ℎ 𝑢)) ∈ 𝐴)) |
11 | 8, 10 | syl5ibr 246 | . . . . . 6 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴)) |
12 | 11 | expd 417 | . . . . 5 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → ((𝐴 ∩ 𝐵) = 0ℋ → (𝑆‘𝐶) ∈ 𝐴))) |
13 | 12 | com13 88 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → (𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴))) |
14 | 13 | rexlimdvv 3201 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢) → (𝑆‘𝐶) ∈ 𝐴)) |
15 | 3, 14 | syl5bi 242 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑆‘𝐶) ∈ 𝐴)) |
16 | 15 | impcom 409 | 1 ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 ∩ cin 3891 ↦ cmpt 5164 ‘cfv 6458 ℩crio 7263 (class class class)co 7307 +ℎ cva 29331 Sℋ csh 29339 +ℋ cph 29342 0ℋc0h 29346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-hilex 29410 ax-hfvadd 29411 ax-hvcom 29412 ax-hvass 29413 ax-hv0cl 29414 ax-hvaddid 29415 ax-hfvmul 29416 ax-hvmulid 29417 ax-hvmulass 29418 ax-hvdistr1 29419 ax-hvdistr2 29420 ax-hvmul0 29421 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-grpo 28904 df-ablo 28956 df-hvsub 29382 df-sh 29618 df-ch0 29664 df-shs 29719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |