HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2a Structured version   Visualization version   GIF version

Theorem cdj3lem2a 31183
Description: Lemma for cdj3i 31188. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2a ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑆𝐶) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2a
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . . 4 𝐴S
2 cdj3lem2.2 . . . 4 𝐵S
31, 2shseli 30063 . . 3 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢))
4 cdj3lem2.3 . . . . . . . . . 10 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem2 31182 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑣 + 𝑢)) = 𝑣)
6 simp1 1137 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → 𝑣𝐴)
75, 6eqeltrd 2839 . . . . . . . 8 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑣 + 𝑢)) ∈ 𝐴)
873expa 1119 . . . . . . 7 (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑆‘(𝑣 + 𝑢)) ∈ 𝐴)
9 fveq2 6838 . . . . . . . 8 (𝐶 = (𝑣 + 𝑢) → (𝑆𝐶) = (𝑆‘(𝑣 + 𝑢)))
109eleq1d 2823 . . . . . . 7 (𝐶 = (𝑣 + 𝑢) → ((𝑆𝐶) ∈ 𝐴 ↔ (𝑆‘(𝑣 + 𝑢)) ∈ 𝐴))
118, 10syl5ibr 246 . . . . . 6 (𝐶 = (𝑣 + 𝑢) → (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑆𝐶) ∈ 𝐴))
1211expd 417 . . . . 5 (𝐶 = (𝑣 + 𝑢) → ((𝑣𝐴𝑢𝐵) → ((𝐴𝐵) = 0 → (𝑆𝐶) ∈ 𝐴)))
1312com13 88 . . . 4 ((𝐴𝐵) = 0 → ((𝑣𝐴𝑢𝐵) → (𝐶 = (𝑣 + 𝑢) → (𝑆𝐶) ∈ 𝐴)))
1413rexlimdvv 3203 . . 3 ((𝐴𝐵) = 0 → (∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢) → (𝑆𝐶) ∈ 𝐴))
153, 14biimtrid 241 . 2 ((𝐴𝐵) = 0 → (𝐶 ∈ (𝐴 + 𝐵) → (𝑆𝐶) ∈ 𝐴))
1615impcom 409 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑆𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3072  cin 3908  cmpt 5187  cfv 6492  crio 7305  (class class class)co 7350   + cva 29667   S csh 29675   + cph 29678  0c0h 29682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-hilex 29746  ax-hfvadd 29747  ax-hvcom 29748  ax-hvass 29749  ax-hv0cl 29750  ax-hvaddid 29751  ax-hfvmul 29752  ax-hvmulid 29753  ax-hvmulass 29754  ax-hvdistr1 29755  ax-hvdistr2 29756  ax-hvmul0 29757
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-grpo 29240  df-ablo 29292  df-hvsub 29718  df-sh 29954  df-ch0 30000  df-shs 30055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator